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PREFACE

Reaction processes are of many kinds and ¢ountless approaches have been used to
model them, Consequently, the scientific literature on the subject has been almost
embarrassingly superfluous. Yet one comes away from the study of this subject with
the uneasy feeling that reaction processes aren't really well understood at all,
Prof. James Keck of MIT once made the remark to me that, with a couple of disposable
parameters that usually occur in the theoretiéal models, one can fit experimental .
data equally well to almost any of the models. This is particularly true because
most of our experimental data on any one reaction is obtained over a relatively
narrow range of absolute temperature while the differences in the theories become .
apparent only over a broader. range of temperature. Thus, a semiempirical fit of
data to .a theoretical model.is a necessary condition, but by no means a sufficient
condition to. establish some reality in the model.

Many of our current reaction-rate theories are not very helpful in an engineer-
ing sense because they are only qualitative and cannot be quantified. Even the so--
called "absolute reaction rate theory" includes an undetermined. transmission coeffi~
cient that gives the probability the system will pass through a saddle point in the
potential surfacé which controls the dynamics of ‘the system, and generally this
coefficient is uncertain by many orders of magnitude. Recent work with large, high-
speed computers can now quantify some of these coefficients using statistical Monte
Carlo techniques, but the computations are long and laborious brute-force approaches
that lead to numbers and lack the elegance of analytic methods; nevertheless the..
numbers we obtain from this approach will certainly be useful. The problem here is
that the potential surfaces are not generally known with good precision ~ though
these surfaces will also eventually be calculated with.numerical quantum chemistry
methods, using our large computers.

Even then, precise knowledge of potential surfaces and the shape of "their saddle
points will not completely solve.the problem. The dynamics of a system are only
determined by a single potential surface when the particles involved.react as a
purely classical system; in many cases quantum effects areé important and the transi-
tions between potential surfaces tremendously complicate. the computations. When the
dynamics of very light weight electrons are involved in a collision process, such as
in charge transfer reactions, for example, the model must be a quantum mechanical
one to duplicate the full structure.of the reaction cross sections — though sometimes
a classical approach can be devised that will cut through the mean value of the quan-
tum results. Nevertheless, all classical models of electron collision processes must
be régarded as semiempirical at best., Similarly, the reactions of molecular parti-
¢les with photons are treated as. quantum mechanical perturbation problems.

Reactions invoiving very large molecular systems, as in organic chemical struc-
tures or polymers, tend to be in a class by themselves..Generally, the initiation
collision process, whether it be a particle or a photon, merely tends to excite some
mode of internal energy in the molecule, and after a loug, involved process of redis-.
tribution of energy among some coupled internal modes, the energy in some critical
reaction coordinate takes on a statistical probability of exceeding a threshhold
value, and the reaction proceeds long after the causative. event. These reactions
often appear unimolecular to an experimentalist, that is, they do not depend on the
concentration of ‘¢ollision partners as .in the usual two- or' three-body coliision
event, and the excited states produced by the collisions can be treated as steady-
state species in thermodynamic equilibrium with the.lower energy states. Such
redistributions of energy in complex structures are very involved, the potential

vii
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energy surfaces are multidimensional, and even our best computers are helpless to do
the type of numerical statistical computations that could lead to quantitative

results, . .

The wide variety of reaction processes alluded to above cannot be adequately
treated in a single small book, even if the author had the breadth of experience and
insight to do that job. I will limit this book to the types of reactions of engi-
neering importance that I have encountered in NASA's program of space vehicle devel-
opment. These have generally been collision-induced rate-processes between low mole-
cular weight particles that occur in hot gases about vehicles entering the earth's
and planetary atmospheres and in flow. about hypersonic aircraft, also some electron
and photon collision processes that occur in flow near intense shock waves and in
gasdynamic and electric.discharge gas lasers. The reactions are primarily rotational.
excitation, vibrational excitation, dissociation, atom shuffling, electronic excita-
tion, ionization, and photon absorption. 1In.a few cases, electron-charge transfer
processes are important; however, they require a specialized quantum discipline and
this will be treated only in a cursory manner here..

Even within the limits. set above, the myriad of theoretical models cannot all be
adequately treated, and frankly, I have chosen to discuss those models which seem, in
my opinion, to be the most useful — elther in the sense that they yleld quantitative
results that can be applied to NASA's engineering needs, or that they provide a good .
insight into the processes going on in our high temperature gases. Some very simple.
models are treated here along with some more advanced concepts.. The oversimplified
theoretical models seem to be the most useful ones, as a matter of fact; most often
in engineering applications we use a simple Arrhenius formulation to fit and extrapo-.
late our experimental results. However, some of the.more advanced theories do add

considerably to the understanding of rate processes, even when they can.only be quali- .

tative. Also, they are part of the general background that any scientist or engineer
will need to read_and absorb re¢~earch literature on the subject.

Finally,. the book makes no attempt to catalog the many calculation results that
abound in the literature — particularly in the last few.years as a result of the
availability of large, fast, digital computers. Rather it concentrates on the funda-.
mental concepts that are needed to understand che meaning and the limitations of the
computer numbers. These fundamentals. have been well understood for a number of years.
and there seems to be very little new material of this fundamental type to appear.in
recent literature; thus, the. references will often seem a bit old, though they are
in fact valid and up-to-date.. The fundamentals.have.merely been lying dormant until
the availability of computers could make use of them to give some useful .numerical
results.. The bulk of the current literature on reaction processes is of the computa-
tion type, along with some occasional new experimental .data.

The material for this book was. first organized for class lectures presented to
graduate students in.mechanical engineering and in aeronautical engineering at the
Massachusetts Institute of Technology (1965-66) as a course entitled, "Atomic and

Molecular Kinetic Processes.' The material has subsequently been expanded and update .
for a graduate course in the Aeronautics and Astronautics Department of Stanford Uni-
versity (1975, 1978, and 1981) and also for training seminars attended by vresearch .

engineers of the Fluid Mechanics Branch, the Magnetoplasmadynamics Branch, and the
Physical Gasdynamics and Lasers Branch of the Ames Research Center of NASA. The
emphasis in my choice of a small slice of the research material from the vast litera-
ture on rate. processes has largely been determined in accord with the research needs
and goals of these three branches of NASA,
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The references. cited merely represent a few -that have become classic or that I
have. felt helpful; they fall far short of a full bibliography. However, the basic -
theoretical foundations of. the subject. have been relatively stable for a decade.or
80; consequently, the brevity of the bibliography will hopefully not seriously
detract from the. purposce of the book, This purpose is basically to help rescarch
éngincers easily digest and understand the literature on rate processes, so0 they <an
cfficiently apply this work to their engineering problems, and can then devete their .
research time to.other aspects of these problems as required.. Redc¢tion rates are,
after all, only a minor part of the problems engineers face in dealing with hot gases
and plasmas. Engineers.must also.give.their attention to heat transfer, to aero-
dynamic design, to boundary layer effects in laminar and turbulent flows, and to many
other factors which may or may not be coupled to the rate processes, Thus, the.engi-
neer approacheés the subjeéct of reaction rates with a willingness to. approximate .and
a need to consider the entive system, which are usually not appropriate for .the
physicist or the physical chemist.devoted to the search for knowledge on reaction
processes as an end-to itself.

Thé present text will také a somewhat different approach to reaction kinetics
than found in most .other texts. . The emphasis will be on .the formulation of rate
processes in terms of inelastic collision cross sections, and th2 manner in which
cross sections of realistic functional shape léad to modified Arrhenius-type
available-enérgy formulas for the rate coefficients. The effects of ladder .climbing
a series of cxcited states leading to. final réaction will be.treated, which will
lead .to the mastér equations for chemically réacting gas species. Semiempirical
and simple approximate methods will be discussed aléng with some more. advanced

mathematical theory, sinc¢e theé practical quantitative needs of . the engineer are kept |

in mind along with the need for basic understanding. of thie phenoména and the need
for comprehension of thé literature on the subject.. Collision induced vibrational
excitation will be treatéed in depth. bécause. this represents .the single example of a
réasonably well analyzed heavy particle collision reaction that exists at the pres-
ent time. The morée difficult problém of collision-induced rotational excitation is
analyzeéd by. approximations that arc not very good quantitatively but do provide a
useful qualitative insight to this process,. Finally, the elémentary quantum theory
of transitions at potential surface crossings and quantum scattering theory are
briefly summarized.

I am particularly indebted to James R, Stallcop and Richard L. Jaffe, of Ames
Research Center. of NASA, for help with subject matter in chapters VII, VIII, and IX..
In addition, students at the Aé¢ronautics and Astronautics Department. of Stanford
University -and at the Départment of Aéronautical Engincering of Nagoya University,
Japan, helped uncover a myvriad of small errors.
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i CHAPTER I - CRITICAL REVIEW OF REACTION=RATE THEORY AND EXPERIMENT K

£

i

'r" f . . .

h : FROM THE VIEWPOINT OF ENGINEERING NEEDS

S S L

: : o

i % 1.1 SUMMARY ij

r{ ) :

f B .

i 4 Réaction rate kinetics. is an old science, but is nevertheless judged to be very !‘1
§ undeveloped. in terms of engineering needs. For. éxample, the theory is not yet A

developéd well enough to calculate rates a priori, and is not even very reliable for
extrapolating éxperimental results. .Bulk .rate experiments are fraught with ambigu- |
ity and uncertainties. areé the order of factors of 3, often more. Molecular beam o
methods ¢annot normally measure cross sections for particles of practical interest

in the energy range needed. Nevertheless, we are now on the threshold of an era

when large, high-speed computers will permit. reaction rates to be calculated with

accuracy better than experiment and consistent with the accuracy of that of many ‘
other physical-chemical properties of matter. P

1.2 REVIEW OF REACTION RATE KINETICS

Chemical reaction theory and experiment have received more attention and
research study than almost any comparable area of .physics. and chemistry. The subject
has roots reaching back to 1889 when.S. Arrhenius (ref. 1) proposed to account for
the témpérature dependence of the rate of inversion of sucrose by postulating an
equilibrium situation between active and inert reactant molecules; this led .to the.
well known Arrheénius equation for a chemical rate coefficient, o

%
eE/kT

o =-A (1.1) :

;

|

FA where E* i3 an activation energy representing an amount of internal or kinetic
] énergy required to transform an inert reactant molecule to a.chemically active one,
and the coefficlent A. 1s a constant or a relatively weakly dependent function of
temperature. Theé Arrhenius equation is found to represent. the temperature dependence
of the specific rate coefficients of most chemical reactions reasonably well. The ..
job .of thé theorist has been.to derivé expressions for "A and .E*, while the experi~.
mentalist determines these quantities by fitting Eq. (1.1) to his observed results..
This is thé form in which most engineers make use of reaction.rate relations.-— only
one of the inputs necessary to solve the varied.problems 6f interest to him, which
oftéen involvé mixtures of many chemical species. in solid, liquid, and gas phases

with dynamic motions, heat transfer, mass transfer, viscous dissipation, radiation
transfer, etc., all coupled to_the reaction raté aspect of the problem.

As a general rule, reaction rate results at normal temperatures. (the order of \
100 to 1000 K) have been provided by the physical chemistry segment of the scientific A
community.. With the advent of space travel and instrument vehicle probing of the.
planetary atmospheres, a number of high temperatuie reactions (at temperatures on ...
the order of 10,000 K) bécame important.in the analysis of gas-dynamic¢ flow over
aerodynamic-shapés entering the Earth's or planetary atmospheres at very high speeds, :
of 7 to 20 km/sec. At these speeds the molecular gases.vibrate strongly, dissociate, i
ionize, and.éventually recombine ih different species with other constituents of the
atmosphére, with products of ablation. from the vehicle surface, and with products .of
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the rocket exhaust, 1f any. These reaétions affect the heat transfer to the vehicle
structures, the transmission of information through the highly ionized plasma about
the vehicle, and the radar and.optical signatures provided in the wake flow, for
example, all.problems of Goncern to the .engineer, As a consequence, aeronautical .
engineers played an activé rolé in high teémperaturé reaction rate research. In fact
much of ‘the présently availablé high.temperature dissociation rate and ionization
rate data, as well as somé important shuffle reaction rate data, have been provided
by aeronautical engineérs using shock tubés (réf.. 2). At present, aeronautical engi-
neers are among the most activé résearch scilentists in asséssing the effects of

rocket and aircraft effluents on the upper atmosphere, and they are becoming involved .

in perfecting the. computer modeling of Earth's atmosphere with coupled dynamic flow .
and photochémical rate procéssés. For all of these reéasons and more, the engineer
is now both.an active user and supplier of ¢hemical rate data and reaction rate
theoretical development.

One might.presuppose that.reaction rate chémistry is a well matured science by
now. Reésearch papers on thé subject are legion — théy £ill much of the spacé in
hundreds.of journals published since Arrhenius' ‘time,. and literally thousands of
chémical rates have been measured.. Yet.today there is n¢ reliable method of calcu=...
lating reaction rate coefficients, measurements are usually limited to a narrow
region of temperature.and préssure where the reaction can be observed in the labora-.
tory, the theory is not yet developed well enough to éxtrapolate these measurements
with any degree of certainty, and in most cases the very interpretation of the
experimental measurements is subject to much ambiguity. For example, the experimen-—
ter usually observes a complex mixture of competing reactions and by making cértain .
assumptions that some reactions are fast and others are slow, he eventually deduces
the Arrhenius coefficients which best fit .thé¢ assumed model to his data. In this.
way, many of the réactions of interest to the.engineer have been determined within
a factor of about two or three, sufficient for many purposeés, but hardly matching
the precision of other physical chemical data. Extrapolation of the data beyond the
range of experiment with the simple Arrhenius equation introduces additional uncer-
tainty; even the most complex and.sophisticated theoriés existent, and there are
many, have not been able to do much better in this respect.

Actually, the chemical rate coefficient is not the quantity on whic¢h we should
beé concentrating, anyway. Though this coefficient is the most useful.form for many
engineering applications, the reaction cross section is a more fundamental quantity.
The reaction rate coefficient is merély a suitably weighted average-of such cross
sections which is a function of thé.state of the gas; the reaction cross section
itself is a fundamental molecular propeérty, dependent.only on the collision energy
with other molecules.. The problem here is that molecular beam reséarch methods are
generally limited to very low intensity béams.of ionized particles with too large
beam energy. Thus,. cross Sections carnot generally bé measured in the important
region of collision energy-at the threshold of chemical reaction where they are most

needed.. Also, in almost all cases,. the particles. which the molecular beam physicist

can supply in a well-calibrated, directed beam of usable inténsity are not those
particles of intérést in important chemical reéaction. The théory has been just as
impotent; the Born approximation (réf. 3) which works. well in analysis.of high

energy collisions breaks down at lower energies where the thresholds of most chemical
reactions occur (0.1 to 10 ¢V collision énergy), and at this date some less.than

satisfying semi-empirical methods due to. Gryzinski (ref. 4) are still about_the most -

useful way to estimate low~energy collision ionization and excitation cross sections
for engineering needs. In fact, if oneé.takes.a really hard-headed critical view of
the field, one ¢an réach the.conclusion that only three reactions have been treated
in any real depth: . first 15 the collision-<induced vibrational excitation of diatomic
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molecules (refs. 5.and 6); a second is the simple atom exchange reaction in atom=_.

diatomic collision (refs. 7 and 8), and the third 1s electron charge transfer
(ref. 9). All of these reactions have recently taken on additional importance in

engineering problems with the development of gas lasers; vibrational excitation and

de-excitation by c¢ollision,

Ay,(W') + M A (V) + M (1.2)

is one of the mechanisms establishing the population. inversions in diatomic gas .
infrared lasers, and exchange reactions such.as

F+H, » HF + H (1.3)

are important in chemical lasers. However, even thése well studied reactions have
generally been treated only for the collinear collision case, (that is, the colli-
sion partners are all constrained to motion along a single line) which is.clearly
the most. atypical .collision one can postulate (collinear collisions occur with zero
probability), and important effects.of rotational coupling have been.almost com- -
pletely ignored. The reader should not infer from thesé remarks that the reaction -
ratée theory has been useless; the theory has, in fact, provided some very useful
functional forms that can be fit to observed data reasonably well. The point is
that, reaction rate theory is still very incomplete and has not been suitable for.
quantitative calculations of cross sections.and reaction.rate coefficients of the
type that would be most useful to engineers. - -

Perhaps.thé above ¢comments on .the limitations .of reaction rate theory and
experiment seem unduly pessimistic in. an age where scientific achievement. has béen
so extraordinarily successful in many, many ways.- Indeed, theré are many indica-
tions that we are just now reaching the threshold of a new era of high-speéed, large-
capacity computers that will drastically change the situation with regard to reac-
tion rates. Rice and Teller in a delightful semipopular book (ref. 10) called
simply, "The Structure of Matter" pointed out as long ago. as 1949 that one could, in
principle, determine all the physical-c¢hemical properties of matter, including cross
sections and rate coefficients, as accurately as.desired, from numerically computed
quantum wave functions. . The problem is. that the labor .and expense of accomplishing
this has been so large that the only practical way of obtaining these properties of
matter has been by experiment, in combination with some. rather approximate theory.
This situation may now be reversing itself. The advent of "large-capacity, high-
speed computers has already permitted the calculation of diatomic molecule wave.
functions with sufficient precision to determine some properties of these.molecules
as accurately as by experiment (refs..ll and 12). Thesé calculations can be made
more precise yet, merely by expanding the .unknown wave functions in terms of a larger-
set of basis functions, exactly analogous to the process of carrying a series expan-
sion in terms. of an orthogonal set of functions to still higher-order terms., This
should be possible with still larger and faster computérs now. being developed, such
as the ILLIAC IV with 64 channels of simultaneous parallel data procéessing (ref., 13).
Bigger and faster computer systems being developed for computational fluid mechanics .
(ref. 14) will also .find applications in advanced computational quantum chemistry
and will expand the scope and size of the problems that can_be attempted. Very
likely, the computer will eventually become the fastest and least expensive means of
determining many properties of. matter, rather than experiment. Polyatomic and solid- .
state wave functions (refs, 15 and 16) will also be .assessed.as readily as the dia~ . .
tomic molecule wave functions are assessed now.
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To give another example of the impact of large high-speed computers on reaction
rate calculations, the problem of pure rotational excitation in collision is now
being successfully attacked for the first time. This problem had never been solved
correctly because the spacing between rotational states is small compared with KT
at the temperatures of interest, and small perturbation methods fail. A rigorous

( quantum method of solving this problem was formulated some time ago by Takayanagi
(refs., 17 and 18), but the solutions expanded in terms of partial waves converged to

‘ the answer so slowly that as a practical matter the only numerical estimates were

AR made with rather approximate methods, using the sudden approximation in quantum

; mechanice or artificially diagonalizing the perturbation matrix obtained in a semi~

classical approach (ref. 19). Now Takayanagi and Itikawa (refs. 20 and 21) have

succeeded in using the close .coupling method to calculate rotational transitions
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; at low temperature in. simple He - Hz and He =--HD collision systems, and calculations. "
| using their method with larger computers, involving heavier molecules, are presently
: in_progress.

As a final example showing the utility of fast calculators, statistical methods
of "calculating reaction rates can be used once the interaction potentials are deter-
mined. Most atoms and molecules are heavy enough so that classical trajectories can
be used with fair precision, and 1f initial conditions are chosen randomly by a
Monte Carlo. method, the computer can.numerically follow these trajectories and deter-
mine whether or not any given set of initial conditions leads .to reaction or not.

The problem has been that so many trajectories need to be calculated to get a good
statistical average over-all possible .initial conditions, that the necessary com-- ?
puting time becomes exorbitantly long. . Recently, however, Shiu (ref. 22) and Jaffe { k
(refs. 23 and 24) have .used the method to obtain results for three-dimensional ceclli- o
sions involving simple dissociation and atom exchanges such as

s

Sy P

o R

H +H+H+H+H, H+Hy~+H,+H,

and

g H+Fy +HF + F

?' The method is presently being extended to more complex systems using faster i
computers,_

Incidentally, the experimentalist will remain as.necessary as before in this new . ...
era, only his function will change somewhat. Instead of providing approximate exper=
imental results on properties of matter over as wide a range of conditions as pos-
sible, so that they may be available to the engineer as needed, the experimentalist
will devise more precise, carefully controlled experiments that are subject tv.the
least .possible ambiguity and that will be used as check points. on the computer codes
which are developed. The computer will then take over the job of extrapolating
results to arbitrary values of temperature, pressure, density, etc. as needed.. Even
with computers that are bigger and faster than those presently available by factors
of 100 or so, the job of obtaining precise wave functions is so long that approximate
theoretical models will need to be used for reasons of economy. . The codes which
incorporate these models will thus need to be checked with some firmly anchored !
experimental points and a few exceedingly long precision calculations. Further
improvements in computers by another factor of 100 would be needed before the |
numerical wave function calculations can be said to be relatively free of approxima- .
tion. Perhaps this much improvement will be unattainable because of the limiting
signal speed of light in computer circuits. However, even if wave functions can
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never be computed without some approximation, it is presently becoming clear that

they will be obtained with sufficient precision to provide the best numerical evalua-
S tion of many of the properties of matter needed by engineers.

¥ Once the wave functions are found, a rather long step remains in the evaluation
B of eross sections and rate coefficients (ref. 8). First, the potential surface must.
: ' be obtained for all possible configurations of the reaction species of interest.
; Then the collision trajectories may be determined by a variety of methods from
! ' classical, semi-classical, to full quantum treatments. The latter will always be .

? the standard of precision of course, but in many cases of interest to engineers,

the molecular weights are heavy enough and the kinetic motions fast enough so that

‘ classical or semiclassical approximations will undoubtedly provide reasonably good
: results. ..

T R TR T

; With these expectations in mind then, it is-the purpose o6f this. bock to outline.
some of the present status. of reaction-rate chemistry that .is useful to engineers,

; and also derive some of the concepts that should be useful in the coming era in which

ﬁ_ 1 machine computations will provide the engineer with more and more of the data he

f‘ ; needs, data which has heretofore often been unavailable to him or available only in
Ev

%

e T

crude and approximate form.

1.3 ORDER OF CHEMICAL REACTION

it _'._.,.m';‘i L

The rate of a chemical reaction .R is defined as the number of reactions which
occur per.unit volume per unit time. The rate is generally expressed. ‘

—R = afA][B][C] . . . , (1.4)

where o. is the reaction rate coefficient and [A], [B], [C], etc. are the concentra- - - A
: tions of the reactants. involved in the process. The. coefficient is a strong function B
E, : of temperature, but is independent of the.density or concentration factors. In much .

: of the literature, the symbol k 1is used .for-the rate coefficient; a ..1s used in
this text to.avoid any ambiguity with the Boltzmann constant.

Dk it .

If only one concentration factor appears, the reaction is first order; if a
9 , bimolecular ¢ollision process. is involved between.. A and B, then the reaction is
E' : second order; if a trimolecular collision between' A, B, and C, then the reaction.
3 : is third order; and so on. In the early days of.reaction kinetic studies, much
attention was given to the determination of the reaction. order-because .this gave a
¢lue to the rate determining c¢ollision process involved. However, the experimental- -
ist typically observes a total reaction process .which may consist of many steps or a
series of collision-induced reactions. In such cases, the overall reaction can
appear to be of fractional order — that is, the rate may be found to be proportional
to some fractional power of concentration or density. Thus, the order of reaction
is no longer considered to be such a significant parameter. In this text, we take
the viewpoint that each step in the reaction is an individual rate process, in
which case it generally becomes clear whether the process is a unimolecular -decay,
a binary collision event, or a three-body collision event. At usual gas phase den-
sities, one never need consider higher-order processes than three-body collisions.
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The rate of a reaction that proceeds spontaneously 1s dependent only on the
conéentration of tha reactina species and is sald.to be first order.

A* » A (1.5)

The spontaneous decay of a radioactive material would be one example. The rate
R of the first order reaction in terms of the reacting species per unit time per
unit volume may be expressad.

R = —-]-dg‘: R/ - -——-]-dgl:* = Q[A*] (1.6)

where [A] and [A*] represent the concentration of.species A and A*, respectively,
and o is the reaction rate coefficient.

Reactions.other than a spontaneous unimolecular reaction may appear to. be first
order. For example, a photon éxcited reaction in au equilibrium radiation field may
have a steady-state population of the excited molecular state, which may then.spon-.
taneously decay back to.the ground state or to a new chemical state such as a dis-
sociated state.

AB + hv = AB* -~ A + B. (1.7)

In this case, if the spontaneous optical decay back to. the ground state AB is slow,

as in quadrupole type radiation decay, the excited molecule AB¥*- may have sufficient.

1ifetime for a reasonable fraction to dissociate, and the correésponding rate process
may appear to be first order

R = 4LABL  o(aB) = o' [aB¥] | (1.8)
even though the initial excitation process is really a two-body collision process
between the molecule AB. and the photon hv. The reaction rate coefficients o .and.

o' are both constant if the ratio [AB*]/[AB] is constant, that is, independent of .
density. These so called constants are.typically strong functions_of temperature.

What_is really occurring in reaction (1.7) involves five separate reactions.

Three are second order, giving the rate of absorption excitation, the rate of stimu- .

lated deexcitation, and the rate of collision excitation, respectively:

o

AB + hv —— AB¥ . (1.7a)
02

AB* + hv — AB +-2 hv (1.7b)
O3

AB + AB — AB* + AB (1.7¢)

Two are first-order reactions, giving the rate of spontaneous dissociation and emis~
sion, respectively:
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AB% —+'4 A + B (1.7d)
AB* 5+ AB + hy . (1,7e)

At equilibrium, where the rates of gain and loss in.. AB and AB* are equal

al[AB] [hV] + ag [AB]Z

d{AB]/dt _
d[AB*]/dt = &, [AB*][hv] + (o, + os) [AB¥] =1 . (1.9)
and
o, [AB][hv] + a,[AB]?
[AB*] = (1.9a)

012 [Wh\)] + (G“ + 0.5)

If [hv] is large enough to that the first terms. in.both.numerator and denominator of
Eq. (1.9a) are dominant, then

o

[AB*] ~ af [AB] (1.9b)

and the total reaction appears.to be first order when Eq. (1.9b) is substituted in ...
Eq. (1.8)

R

oy
o (—T> [AB] =-o[AB] , (1.8a)
as)

On the other hand, if the radiation. intensity is very low, the spontaneous dissocia-
tion and emission are the principal mechanisms.depopulating the excited state. Then

G3 )
[aB*] = (Qu +'E;> [AB]". (1.9¢)

and the overall process tends toward a second-order.reaction

Qg3
R = a'(;——————) [AB]2_= OL[AB]2 I : (1.8b)

4.+t og

In an actual case, the reaction may appear. to the experimentalist to be intermediate -
between first order and second order. This possibility exists whenever. the process
observed consists of.a serles of separate reactions rather than a simple event.

A similar résult can occur in .a particlé collision process with a complex
organi¢ molecule. If the time for redistribution of the collision energy among
internal modes.of the complex molecule (which involve the .reaction coordinate; i.e., _
the weak link of the molecule) is. long é¢ompared with the time between collisions,
then the collisions can establish a pseudosteady equilibrium of the excited state,
which then decays in a unimolecular manner to the products

o
A+ M Zé A% + M (1.10a).
1

M IS A A " - .wnir’.'r T T ——

il i

f
s it e s it

s

N



ORIGINAL PAGE IS .
o OF -POOR QUALITY

A% —3 A" 4+ A" (1.10h)

As before, this may look like a first order reaction to the experimentalist, e

For.these reasons, the order of a reaction is not of primary ¢oncern.. Non-
integer orders.of a reaction appear as an artifact because we have grouped several
reactions together in one ovérall reaction, and it is the overall reaction that is. .
observed by the experimentalist. Howevér, on the fundamental level where the reac- )
tion is décomposed into. its separate. rate process, there is no confusion about. the
order. All of the.fundamental reactions considered here.will be either second order
or third; that is, they will be the result of either two-body collisions, such as

A+M = A* + M . (1.11)
or three-body collisions, such as

A+B+M = AB+ M . (1.12)

In reaction (1.12) the third body M 4is essential in the forward direction as well

as in the reverse direction, because it is needed .to carry away the excess kinetic
energy of collisions betweén particles A and B. Otherwise these particles.will have .
more energy than the binding energy of their attraction. Without the third body M,

A .and B would merely approach one another and accelerate as they entered each

other's attractive force field, perhaps orbit one another a time .or two, if the angu-.
lar momentum is.just right, and then fly apart again. Only when the third body car- -
ries away some of the excess kinetic energy can the particles remain trapped in their
attractive potential well.

A similar type of consideration occurs in the chain reactions that are typical .
of combustion or detonation processes. The reaction is a series of reactions, some
of which may be.so rapid that experimentally we never observe some of the intermedi--
ate products such as free radicals which are responsible for some of the.steps in the
process (though many free.radicals have been identified spectroscopically in reacting
gas mixtures). The chain reaction may be a stationary one in which the number of
chains starting per unit time equals the number of finishing chains, or it may be an
escalating rate process, in which each chain terminates with the production of more
than one activating radical. In such cases, the reaction may be explosive,. unless
the activating radicals can migrate to a wall where they deactivate by collisions at
the surface. Then the overall reaction rate depends on the geometry of the container,
among other. factors.

Let r be the number of active radicals produced on the average in each complete.

chain cycle of reactions, [A] be the concentration of normal unactivated molecules of
the gas, [A*] be the concentration of the activated molecules of A which starts the
chain process, and [B] be the concentration of products produced by the chain reac-
tion. For steady state,

d(ar] _ _dlB] _ ¢

dt dt (1.13)

The rate of change of [B] can bé expressed
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diBl o g, [a%] - oz[A](B] = O (1.14)

where o, is the rate constant for ‘spontaneous decay of. A% to B and a, 1is the
rate constant for deactivation of. B by collisions with A. Similarly, the rate of
change of [A*] can be expressed.

d[dA;* = ay[A][A] + ra,[A]([B] —a, [A%] - a,[A][A*] =0 (1.15)

where a, 1s the rate éonstant for activation of A by collisions with itself,
independent. of the chain process, ro, is the rate constant for the production of A¥
by the active radicals that are products of the.chain reactionm, and o, is the rate
constant for deactivation of A* by collisions with the nérmal molecules A. From
Eq. (1.14)

o, [A¥]

B] = ————= 1.16
(3] = 0 (1.16)
Substituting this in Eq. (1.15)
ay[A]% + ra, [A*] - o, [A*] - o, [A][A*] = 0 .- (L17)
Whence, the rate of reaction R is
alas[A]2
(1.18)

R = Gl[A*] = GH[A] + dl(l _.rj

If every activated product molec¢ule produces just one reaction, r = 1, the rate
becomes
a,0,[A]
R = ———m—— (1.19)
Oy

and the overall reaction can look like a unimolecular first order reaction, even...
though it does depend in fact upon a series of binary collision processes. Note

that if r is greater than one, as often happens in chain reactions, the reaction
rate can become very large as oy (r --1) approaches. o,[A]. In this case the overall
reaction appears. second order. Once again,. however, when the chain process is. decom-
posed into its elemental rate process, each step in the process is clearly defined

as to its order.

Exercise 1:1: First order reactions in homogenedus gas phane are rather rare. Among the handful of reactions of this .
type are thermal dissociations of N,0s, N,0, acetone, various aliphati¢ ethers, amines, ethyl bromide, and azo compounds .
The thermal decomposition of asoisopropane to nitrogen and hexane is typical. The trans configuration of the compound

scems to be stable |
CH3

AN

H“"‘C\
/ N=—N
CH3 \
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but at elevated temperature the collisiona set up an equilibrium distribution bétwéen the tranas and cis forms, and the
latter decomposes spéntancously to nitrogen and hexane .

CH3 CH3
H H
\| |/
CHp—™m™C — — — — C (:Fia - *.’(:6 F‘14'*‘FU2
3 \N—N/

You. have measured the rate of this decomposition.at 270° C and obtain the follewing data:

Décomposition of azolsoprepane at. 270° C

t, sec P, mm Hg
0 40.0
120 48.8 e
240 55.4
360 61.0
480 - 65.3 .
600 68.4
900 73.7

Knowing that one mole of azolsopropane vapor produces two moles of vapor, calculate.the rate coefficient. from the
above data assuming the vapor is a perfect gar and that the reaction -4s first order. Is the rate coefficient constant?
What are the units of a? Is it justified to assume the reaction .is first order? Wha
mean ¢alculated rate coefficient, according to the above data?

1.5. . SECOND- AND THIRD-ORDER REACTIONS

Second order reactions are those depending on two body collisions such as the
simple dissociation reaction:

AB +M>A+B+M (1.20 .

These two-body collisions are very rapid in gases at.normal densities, and such reac:

tions can proceed .very rapidly if there is an appreciable probability that a colli-
sion can produce the reaction.

The reverse reaction is, of ¢ourse, a.three-body or third-order reaction. In
the early years of chemical kinetic studies, three-body collisions in gases were
believed to be so rare that they were always negligible for any practical purposes.
However, we now know that these three-body processes are responsible .for establishing
the equilibrium condition in casés like the dissociation reaction (1.20). Both

forward and reverse reactions occur with.rate coefficients o, and a,.
a, .
AB + M S A+tB+tM (1.20a)

1 c-

and the ratio of the forward to reverse rates_is:

31 GllAB][M] (AB]
R, ~ o, [AI(BITMT - Reg [__LA][B] (1.21)

10

t 1s the -standard deviation trom the
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1s. the equilibrium constant, the ratio of the forward to reverse reaction

ate-constants,

Four-body collisions are so extremely rare in normal gases that they seem to be .
.ruly negligible for all practical purposes. . Thus, we shall only need.td consider
‘i¥st-, sccond-, and third=order reactions.,

1.6 REACTION RATES IN NONEQUILIBRIUM GASES

Usually éxperimental rates are available only for one direction of reaction and
ieldom in the reverse. The usual procedure is.to then assume that the forward and
‘everse rateés, ¢ and ay, are related to the equilibrium constant Kg,, which can be -
:alculated very precisely from the partition_function using spectroscopically deter-
nined energy levels (vef. 25).

Keq (1.22)

QI.’E
n M

Chen the undetermined rate.can be calculated from the measured rate.

The problem.here is that the experimentalist never measures a rate at .the equi-
librium condition. At equilibrium the forward and reverse rates. exactly counter-
balance and the experimentalist sees only a steady-state population of species. He
neasures a.rate. of specics.production only when the state of the gas is away from
equilibrium, such as may occur when two reacting speciés are suddenly mixed, or when
an uctivating flash lamp is suddenly turned on or off, or when a shock wave suddenly
heats and compresses the gas to a nonequilibrium. condition.. Thus, the measured
values of « are not truly the equilibrium values and we cannot be sure that
Eq. (1.22) will still be valid for these measured rates.. Rice (ref. 26) discusses
some of the queéstions concerning the validity of using Eq.. (1.22). with measured
nonequilibrium rates and ¢concludes that in many cases, even. if the gas is not in
equilibrium, the ratio. of the observable rates should still equal the equilibrium.
constant, One illustrative.mechanism that suggests this. is as follows: Suppose
there are substances A and B. existing in a total of four states and that transi-
tions take place only. between adjacent states

A = A, =B, B (1.23)

This model simulates the-situation where multiple.excited transition states occur,.as .
in the vibration-rotation.states leading to molecular dissociation or the excited
clectronic states leading to ionization for example; then A; and B; represent.a
sort of average of all the intermediate states from which the reaction actually

takes place following.a.collision event. These activated states are typically
preésént only in small numbers. The experimenter usually measures. only.the rate of
change in A, or B,, however, and may be quite unaware of A,.and By. If the system
is not in cquilibrium, the concentrations of A, and B; will rot be their equilib= .
rium values; howéver, we shall later see that in typical cases the system quickly
feaches a pscudosteady state in.which these transition states are relatively constant
and close to their equilibrium value..

1f the entire .system were in equilibrium a;,{A;] = a3, [4;]), a;3(A;) = a3, {B;],

and a3, [B,;] = a,,[B,], where ayy is the rate constant for state. 1 to state J.
The equilibrium constant 1s thus .

11
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[Bqll. [(B,] [By] [A] &y, apy &y,

 "TETTEY YW TR ESET (1.24)

K

Now assume the most nonequilibrium possible initial conditienm, [B,] = 0. For
this case, the observed forward-rate constant is

dla,] 1 [dB,] _

%eff = [Al] & " TA] T (1.25)

Incidentally, a plot of —Og as.a function of time, made from the observed [B]
and [A] as functions of. time, is gound to be relatively constant for many reactions,

like dissociation and ionization. The reaction scheme for this nonequilibrium
extreme is now -

A Pt A 22 B B (1.23a)
L 7 —> . a '
1 ag, 2 0y T 4
and the rate of reaction R is
d[B ]
R=Ta3“[3 ] (1-26)
If B, 1s assumed to be in pseudosteady state
0y3[A,1 - a3,[B3) - a5, [B;] =0 (1.27a)
3 Ga3
(B,] ~ Grs F s [A,] (1.27b)

Similarly, 1f .A, is assumed to be in pseudosteady state

Ay, [A;] = 0y, [8,) = ay50A,] + 0y, [Byla0 . (1.28a)
a12[A1] a32[B ]

[A,] = =+ e 1.28b

¢ ®yy t oy, 0yy + o‘23 ¢ )

Substituting (1.28b) in (1.27b), one obtains

(8,] ~ 2%, A ] 52023 1B, ] (1.29a)
3 (03, + 03400, + Ol23) (05, + a3q)(ag; + T g
or
Balogiag, + agyagy + ay505,) = ay30,[4,] (1.29b)
Then from Eqs. (1.29b) and .(1.26) the reaction rate R 1s given. by
b Jee—— .
R = (A ] ®12%2 303, (A1 (1.30
=aq >~ - .
eff 7 1 T G0y, +p105, F Gpa0g, 1
Now consider the opposite extreme, where _[A,] =0
A i p, e B (1.23b)
= A "'—'-“" 4 Cad .
Doy TEoapy T oag, T
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% In an exactly similar way, assuming A, and B; to be again in paeudosteady

| state, the reverse rate R' and the effective reverse reaction rate Géff are
¢ glven by

~ R! Gy3%32%1
a23a3“’+ &

) - ! .
21%3y T %5104, [By]) = ageslBul (1.31).

e e

Then the ratio of the effective observed forward and backward rates is

o 0y 20 30

ef £ 12%23%34 :
’ =1 = K (1.32)
t Gogg- G21%320u3 eq

| which.is just the same as .the equilibrium constant given by Eq. (1.24).

The simple derivation above is by no means a proof that the ratio of observed

;  forward and backward rates will equal the equilibrium constant for all reactions. We

© have, after all, assumed that a pseudosteady state exists among the activated states .
that are the .bridge between reactants and products, and this means than there needs
to be a very rapid exchange between the activated states and a rather rapid deactiva-
tion from the. excited states to the. ground.state compared with the rate of activation
of the ground staté to the excited state.. In chapter V we shall see that some reac-: ‘ A
tions do..indeed more or less satisfy this condition; for example, the excitation of
diatomic molecules to a ladder of close lying rotation-vibration states that even--
tually lead to dissociation; similarly, the excitation of excited electronic states

, that eventually lead to ionization. The activated species A, and B; in Eq. (1.23)

' ' may actually represent an entire group of close lying states in such reactions..

In many real reactions, the deactivation from B; to B, will be so rapid that ;
the concentration [B;] will also be essentially zero as well as (B,] in Eq. (1.23a). . ; 1
In this case, one simply analyzes the problem as a three-state system, but as long .
as the intermediate state.between reactant and product is in pseudosteady state, the. i
same result.as Eq. (1.32) follows. This is left as exercise (1.2) for the reader to :
solve. b

Exercise 1.2: Consider a three-state asystem
A &3y At @Ry A
1 -a::’» S éz’f- ) .

]

]

2 First let [A,] = 0 and.derive the expression for the observed forward rate constant under this nonequilibriwm condition
E with steady_state A%

)

[Ay]. i :
Sett “T8,7 . 3 :
then let [A;] = 0 and derive the expression for the observed reverse rate constant under this nonequilibrium condition, n

again with steady state A%~ lhy]
1.

+
%eff ".TA;T.

and show that the ratio.of thése two.raté constants is.the equilibrium constant K‘.

In chaptér V we shall find that when an entire ladder of ¢lose lying states exist between the ground state reactants !
and the products,.the states having energy within kT of the final product state will alsc be depleted by thermal colli- e e o
sions .so they are nearly zero when the éoncentration of products .is zero, while the lower lying states will be close to
their equilibrium concéntrations and.all in pseudosteady state. Such reaction systems will again approximately obey the
felation of Eq. (1.32). However, we should keep in mind that this is not necessarily a general relation for all reactions.
Some ¢aution must be observéd in dériving reverse ratés using the equilibrium constant with forward rates observed under
nonéquitibrium conditions;

13
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Exerédse 1,3: Second order reactiona are the most frequently encountered in homogeneous gas phase. This inéludes
thermal dissodiation of HI, NO,;, 0,, €10, HCHO, CH,, CHO, etc¢., and.alsc many combination reactione.such as H; + 1, ~ 2HI,
polymaeriZation of ethylénc, hydrogenation. of ethylene, etc,

You have measuied the thermal dedomposition of acétaldehyde, CHyCHO,.at 520° C. and.obtain the following data:

Decompositién of adetaldehyde at 520°°C

£, sec By mm Hg

0. 400

60 455
120 495
180 . 530
240 560
360 602
600 645

You have determined that the products are methane and CO. Assume the decomposition reaction is first order as in
Exercise 1.1,

CHyCHO + CH, + 00 —

Is the rate coefficéient ¢onstant? Now assume a second-order reaction requiring the collision between two acetalde-
hyde molecules.

2CH,CHO + 2CH, + 2C0

Find the relation between the raté doefficient a and the measured pressure P and the initial pressure P_ and -
calculiate a from the above data. Is. a constant with this assumption? What are the units of a? 1Is it justifged to
assume.-this reaction is second order? What is the standard deviation from the mean.caléulated rate coefficient, according
to the above data? What about collisions between acetaldehyde and the products CH, and CO? Would these give the same rate.
coefficient? - How would you experimentally.determine what these rate coefficients were? Why didn't we need to include cor-
rections for these alternate collisiéns in reducing the aboye data?

1.7 REACTION RATE LITERATURE

Although the archive journal literature on reaction rates and rate theories is .
voluminous, not many books have been written on the subject. This is probably a
reflection of the fact that the subject is not really developed in a totally satis--
fying and consistent way yet — at.least not for all types of reactions. Books that.
do exist are written primarily from the .physical chemist's viewpoint or a quantum
scattering viewpoint; engineering texts usually treat reaction kinetics in a very.
simple and cursory manneér — for example, texts on combustion and detonation or on
flow about high-speed vehicles.. Nevertheless, a number of books on reaction processes
are useful to .engineers; just a few of these will be suggested here. Hinshelwood's
"The Kinetics of-Chemical Change" (ref. 27) covers the concepts of the old, but still
useful, physical chemistry viewpoints up to 1940. A classical work representing the
beginnings of a new viewpoint .is "The Theory of Rate Processes' by Glasstone,
Laidler, and Eyring (ref. 28).. A more recent book by Benson, 'Thermochemical
Kinetics" (ref. 29) gives some methods for estimating rate parameters, particularly
for reactions. involving complex organic molecules, and also gives useful methods for
estimating the thermochemical data for these molecules so that the equilibrium con-.
stants and reverse .rates c¢an be calculated. Perhaps the most widely used books in
Russian literature .are by Kondratiev, and one of these is available in English trans-
lation (ref. 30).

Most books on reaction rates seem to be edited collections (refs. 31-34). They
provide useful updates but.generally lack the coherency desirable in a text. Some of
the most useful books to the engineer are collections of reaction rate data; these
save .the engineer from the tedious task of sifting through.the literature for this
data. Perhaps the most useful of these ¢collections is the 'Defense Nuclear Agency
Reaction Rate Handbook" (ref. 35). Several other such collections exist, such as a

14
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collection of data by Kondratiev (ref._36) and some kinetic rate data for H,-0,-N,
systems (ref. 37), Specialist reports by The Chemical Society (ref. 38) summarize
much of gas-kinetic -literature up to 1976.

A number of good texts exist on the subject of quantum scattering theory. They.
are not usually directly usable to the engineer because they are not quantitative
theories; nevertheless they are essential background.for understanding much of the
literature and the physical significance of reaction processes. The classic text is
by Mott and Massey, 'The Theory of Atomic Collisions' “(ref. 39), and it's still as
valid as when first published.. A couple of more recent good books on this subject
are by Levine (ref. 40) and by Rodberg and Thaler (ref. 41). The theory of quantum
scattering becomes particularly necessary and useful when applied to electron colli~ -
sions. Two very good texts that give the experimentalist's viewpoint along with some

theory are by Hasted (ref. 42) and by McDaniel (ref. 43); these texts are also still .

reasonably up to date on the subject of electron collision processes, more than 15
years after their publicatiom.
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CHAPTER II CROSS SECTIONS, REACTION RATES, AND ACTIVATION ENERGIES

ORIGINAL PAGE IS

2.1 SUMMARY OF _POOR QUALITY

Reaction 1s described in terms o6f transition at.a crossing of. potential surfaces.
reached in the collisién process. The increase in potential up to the crossing
point 1s identified as the ac¢tivation energy.. The energy available to the system in
reaching this barrier is the kinetic energy of relative motion in center o6f mass
coordinates. The collision cross section and reaction rate coefficient are formu-
lated in terms of velocity distribution functions, and in particular.the Maxwell-
Boltzmann distribution funétions. The known form of the cross section leads to the ...
Arrhenius form for the rate coefficient.. The apparent activation energy (that is
the negative slope of an Arrhenius plot) is found to depend on the shape of the .
cross-gséction function at high temperatureé, but at low temperature it reduces to. the .
trué activation energy, independent of the cross section. The dissociative recom-
bination of. NOt + e 1s used.as an example of the analysis of experimental data in
terms of cross sections and activation enérgies.

2.2 INTRODUCTION e e o o -

We consider two particles .in gas
phase, with masses m; and.m; and velo¢- |
ities. U, and U,, respectively, that have ;
a ¢ollision encounter with one another ug "
(fig. 2.1). A potential exists between
the two, principally due to interactions \ )
between the electronic and nuclear .charges \
of the particles. At long range the \
g potential may be either attractive or \ :
| repulsive, depending upon how the elec- NN i

tronic spin functions pair up, but at ~~ :

short range the potential is.always P Y2 ‘
strongly répulsive. The range of the R - AN L !
potential is about the range of the outér Y. \ 4 E )

electron wave functions of the particles \;;'
involved; when thesé wavé functions over-

lap, the-forces that result in attraction

or repulsion are-created. Outer eélectron

wave. functions for atoms and most simple

molecules all extend about a few Ang--

stroms in their ground electronic state, Figure-2.1- Collision between two parti-
so the size of thé total scattering cross cles in gas phase with masses m; and
sections are usually about 107!% cm? or m,, initial velocities U, and U,, and.
s0. final vélocities U] and uj.

e

Dot st i e A
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2.3 ELASTIC AND INELASTIC COLLTSIONS ORIGINAL PAGE IS
' OF . POOR QUALITY

L Some of.the kinetic energy of collision may be converted to a change in internal
' énergy, AEy, of one.or both of the collision partners

g 2 2 . 12 1y2
f mu;  mui my(u)® my(ul)
1M1 Tl 1 2 AR 2.1)

s A e A 1

2w

S RN

1f 0Eq = 0, the collision.is said to be elastic; if AE; # 0, the collision is said
to be inelastic; if AE; < 0, the collision is sometimes termed superelastic. The .
change in internal energy could be due to a change in (1) rotational state, (2) in
vibrational state, or (3) in electronic state of either one or both of the particles,
or it might be the difference-between the heats of formation of ‘the molecules, if an 4
atom exchange takes place between the particles during the collision, or the reaction . :
may be any combination of these changes of internal state. In the limit as very ,]
high rotational and/or vibrational states are excited, the molecules become disso-
clated; or if very high electronic energy states are excited, the particles are ,
ionized. 1In these cases the reaction produces more particles than enter the colli- 1
sion. All of. these changes in internal state may be .encompassed in a.simple general
definition of the term reaction,_namely, reaction is the process produced in ‘
inelastic collision. A reaction which leads to new chemical species (such as.atom
exchange, disséciation, or lonization) is merely a special case of the above. If
AE{ 1s positive the reaction is said to be endothermic (i.e., it abstracts kinetic.
energy from the gas); if AE; is negative the reaction is said to be exothermic
(i.e., it adds to the kinetic energy of the gas).

ol %
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2.4 REACTION POTENTIAL SURFACES - - ‘ :

fv The total energy of the collision .process shown in figure 2.1 may be expressed

in. terms of laboratory coordinates of the two particles . . 1
: ml .2 (%) [¥) mz [ ¥3 *2 (Y] v
L E=—a (x] +y] +2]) +E +75 (X3 + ¥, +25) +E, + V(X;,¥1921 X,5Y55255 « « o )

(2.2) ' 3
q

, where E; and E, are the initial internal energy levels of the two.pariicles, and ; ;
3 the .potential V. 1is the transient change in internal energy of tue parcicles-during i f
s the collision process. The interaction pétential may be taken to include.the initial ; ]
internal energies E, and E, as the reference base level. .In general it will g 3
include a dependence on internal structure and orientation coordinates as well as . '
the particle collision coordinates shown. If the collision is inelastic, i
E;, + E, ¥ E; + E} and the particles may be considered to have made a transition to : i
a new potential surface with a different reference energy. The situation is dia~- - ; -
grammed for a simple one-dimensional form of reaction path in figure 2.2. This would ! '
be the.case for a perfectly spherically symmetric interaction potential, for example,
but in. the most general case the reaction path would need to be described with addi--
tional coordinates involving the internal configurations of the colliding particles.
Such. a ¢ase-will be discussed later when we consider three-dimensional collisions }
|
7

leading to coupled vibration-rotation transitions. However, for the present we are
interested in the general. concepts of a reactive collision which may be treated
symbolically, at least, with the one-dimensional reaction coordinate model. At

e e etbed e oad
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infinite distance apart, the potential is OF POOR QUALITY

a ¢0nstant) E, f Eg, the sum of ;he ini=-. ) \ TOTAL ENERGY E°
tial internal energies of the two parti=- , $ - ﬁNALtﬂNETm

cles; the kinetic energy is. T, and the == lENERQY,T

total energy is E = T + E; + E,. As the T | - . FINAL INTERNAL
particles come together the internal ener- % | ACTIVATION KINETIC ENERQGY, Ej + Ep
gies (vhich may be rotational, vibrational, &| ENeray; \ 'MIERWETC Sk cnanae v
or.electronic) are perturbed and the poten~ & e | INTERNAL ENERGY
tial and kinetic energies interchange such . l__:;”____ INITIAL INTERNAL
that the total is.conserved. Another ] ENERGY, Eq + Ep
potential surface may be defined.for a }

different set of internal states E{,and , !

E;; If this surface intersects, or comes ' e ‘

very. close to the first surface at some COLLISION COORDINATE, r

value of the collision coordinate r,, and

the total energy E 1s sufficiently large Figuré 2.2~ Energy diagram for simplified.
for the particles to approach one another one-diménsional reéaction path.

as close as. r, or closer, a transition ...

to the new potential surface may occur.

The. energy difference E* ' between the transition region and the initial potential

E, + E; will be identified with the Arrhenius activation energy. If the transition
does not. occur,._the particles recede from one another. along the same potential sur-
face as the one on which they approached, the collision is elastic, and the total.

efféect of the collision has been to produce scattering. This scattering changes.the . .

components of momentum and energy of the two particles and gives rise to the phenom-
ena of mass flux, viscosity, and heat transfer whenever gradients in number density,
mass-velocity, or temperature occur in the gas, respectively. If, on the other hand,
a transition to the new potential surface occurs with a certain probability P,_which
will be unity or less, the collision. is inelastic .and the particles recede from one
another at largée separation with a. different kinetic energy T' and neéew steady-state
internal energy levels E} and E}. In general, a multiplicity of such potential sur-
facés occur with different crossing points r, and different activation energies
E*.. Also, some of the potentials may have.attractive regions as well as the purely
repulsive shapes.shown symbolically on figure 2.2. Thus, a.singlé collision event
between two simple gas molecules can lead to a complex multiplicity of reaction
channels. Although reaction processes need not always bé treated as potential sur- -
face transitions (indeed other methods may bé préférable in many cases) one can in
principle always define potential.surfaces with which to describe the reaction in
conceptual terms at least.

2.5 CENTER OF MASS COORDINATES

The most elementary question we must first answer is: What portion of the total
kinetic energy is available along the reaction coordinate? The interaction potential
V. of Eq. (2.2) will in general be a function of the distance r between the_two
particles and the internal orientation coordinates of the colliding molecules (such
as bond lengths and direction cosines)... However, the latter coordinates do not
relate to.the position of the molecules and for present purposes we need concern
ourselves only with dependence of V on the intermolecular distance.- r. Thus, we_
wish to transform the laboratory coordinates ¥, and ¥, used in Eq. (2.2) to
déscribe the particle positions in laboratory space, to the coordinate ?. the vector
distance between the two particles, and whatever additional coordinate R which is
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needed to diagonalize the kinetic energy expression such that only squared terms in
the velocities appear with no éréss product. terms. This is the coordinate of the -
center of mass of the two partic¢les, of course., This transformation allows us. to
separate the equations of motion into. two independent. equations, one a function only
of . R, the other-a function only of r.

Fmdr +Tr + %, = T0x = %) + Tva = y2) + K2, - 20 (2.3)

- ) >
(m, + mz)ﬁ = (m, + mz)(fx + Iy + kz) = 1(myx; + myx,)

+.T(m1y1 + myy,) + ﬁ(m1z1"+-m222) _ (2.4)

The inverse transformation given by Eqs...(2.3) and (2.4) leads to the expressions for-

the components of ?1 and ¥,

m, my
Xy =X ~—>—7—1x , X, =X+————0r
i m, +m, x m, +m, "X.
m, m,
Yy, =Y ~-r——r—rx ,  y.=Y At —0—01x (2.5)
1 m, +m, 'y W m, +m, ¥
2, =2 ~"—p—1_, z, =2+ —p—7r
1 m, +m, "2z 2 m, +m, "2z J

When these are substituted in the expression for total énérgy, Eq. (2.2), one obtains
E = 3;- KP4 92 4 2%) + 4 (B2 + 2} + B2 + V(n) (2.6)

where M dis the total mass (m; + m,) and u is the reduced mass mm,/(m; +m,).. .
The internal energies E; and E; have been incorporated in the potential V(r) as
discussed in relation to figure 2.2.

The kinetic energy associated with the center of mass is a constant of the
motion inasmuch as the potential V, no matter how complex it may be or how nonspher-
ical it may be, does not involve the center of mass coordinates X, Y, and.Z.  Thi .
is just the kinetic.energy of a free particle of mass M and velocity Ix + IY + kZ.
This energy is thus unavailable for reaction.purposes; only the.kinetic energy asso-
ciated with the relative velocity between the two particles may interchange with the
internal energy of the particle. Moreover, thé.reaction path.may be described as
though it were the motion of a single particle of mass u moving in the potential

V(r). . Accordingly, figure 2.1 illustrating the reaction paths in laboratory coordi- .

nates is.redrawn as figure 2.3 illustrating the reaction path in the relative
distance coordinate r. The position of the hypothetical "single particle' with mass
4 may be described relative to an origin that is fixed at.the center of mass and

an axis AA' parallel to the initial relative veloecity vector 4. Another. indepen-
dent coordinate is needed to unambiguously fix the collision geometry; this is the
miss distance or impact parameter b shown in figure 2.3, If the interaction poten=
tial is aspherical, then a third coordinate, the cylindrical angle ¢ is needed to
describe the orientation of the collision relative to the potential geometry. As

the particles approach one another, the trajectory is deflected by the interaction .
potential, of course, but if the particles weré to continue undeflected on their
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initial path, they would then miss one }
another by the distance b. Sometimes it . dS = bdbdg 4
is more ¢onvenient to consider one .of the
collision partners fixed at the origin
with fic¢titious infinite mass .and the
other.molecule approaching with the ficti~.
tious mass u. In either case, r repre- A
sents. the relative distance between the
molecules at any instant of time, and b
represents the miss distance if the parti-
cles were not interactive. Other time.

dependent parameters may be useful in Figure 2.3- Collision between two parti-
describing the collision process, for gur P

cles represented by the motion of a
example, the angle betwee? the vector . single particle with reduced mass
T and .the reference axis AA', In scat- W= mm,/(m; +m,) moving in a poten-
tering problems it is usual to define a tial field V(r) with origin fixed on
different reference axis, the line between )

. , the center of mass.

the two pariicles at the point of closest
approach,. and.then define the scattering
angles relative to this axis. However, for our present purposes it will be suffi-
¢ient to concentrate on the cylindrical coordinates of the initial configuration

relative to the reference axis AA'; these are the radial distance b and the angle
¢ about the reference axis.

2.6 COLLISION CROSS SECTIONS AND REACTION RATE COEFFICIENTS

In the sample of gas many encounters occur simultaneously with a distribution
over all possible velocities u and impact parameters b and ¢. All values of b
and ¢ are assumed equally probable, and the velocities are given by some distribu-
tion function f£(u). The velocity distribution function is normally a Maxwell-
Boltzmann distribution. Quantum effects of gas degeneration are normally negligible
at conditions where reactive collisions are important, and the Maxwell-Boltzmann
distribution establishes itself so quickly in a gas at conditions of usual interest,
even whére internal energies are far out of equilibrium with the kinetic energies,
that nonequilibrium velocity distributions need not normally be considered. However,

one could easily account for a nonequilibrium velocity distribution in the formula-
tions .which follow, if that distribution is known.

The number of encounters that occur in a unit volume of gas within a range of

veiocities du, of miss distance db, and angular parameter d¢ may be expressed
(réfs. 1 and 2)

unlnz

AN = —— £, (u))f, (u,)dd, di,b db d¢ (2.7)

vherée u is the magnitude of the relative velocity |8z - ¥;], n, 4is the number den-
sity of molecules of type 1, n, is the number density of molecules of type 2, £, and
f, are the velocity distribution.funetions for molecules of type 1 and type 2,
respectively, and bdbd¢ 4s the element of cross section area shown in figure 2,3,
Thélfactor 8 1s called the symmetry number; it is unity if the two particles are
different but equals two 1f the two particles are identical.. The symmetry number
must be included to &¢void counting systems twice in the latter case; the number of
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all different combinations of two particles in a unit volume is the produ¢t nyn, 1if
the particles are different, 1t is . n1/2 1f the particles are identical.

Normally we need consider only distribution functions that are isotropic in
space, in which case it i1s convenient t¢ express the velocity volume elements in
terms of spherical coordinates

-> . . . = . 2.
dui = dxi dyi dzi sin ei dei d¢i uy dui ] (2.8)
and integrate over all angular orientations. Equation (2.7) then becomes .

n,n
dN = (47)%

2 ,
uf, (uy )£, (uy)u? duju? du,b db d¢ (2.9)

At this point we want to transform the 1a%prat0ry velocities 31 and 32 shown.
in figure 2.1 to the center of mass velocity = (dR/dt) and the relative velocity

¥ =-£, so that it will be convenient to integrate Eq. (2.9) with respect to the rela-....

tive velocity magnitude, u. The volume elements .are simply related (see Eq. 2.5)

9%, 3x,
. oxX Aty S s
dk,dx, = dX diy ORIGINAL PAGE IS
3% 3%, OF POOR QUALITY
3x Aty
(2.10).
.
m, +m,
= dX df, =di, dX
my
1 m; + m,
so the Jacobian for the entire transformation is unity_
dk, dk,.dy, d¥, d2, dz, = di, 4t di, dk 4¥.dZ
= (41)%u} duyu? du, = (47)%u? dul? qU (2.11).

The total number of encounters.in a unit volume of gas in unit time may thus be
expressed in an integration of .Eq. (2.7)

(Aw) nn, @27 @c@
N = = J‘J- J' £,£,U% duju® dub db d¢ (2.12)

The inner integral in Eq. (2.12)_is a.function only of u. We can define a function
f(u)

f(u) = (4nu)2r £,£,U2 du.. (2.13)
0
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which represents the fraction of the collision encounters which have a relative.
velo¢ity magnitude between u and.u + du. With this definition, the number of ¢éo6lli-
sion encounters may be expressed

n ln 5 20 Mmoo @
N = 3 f(u)u du b_db d¢ (2.14)
0. 0.¥0

Only a fraction of the collision encounters results in a. given change of inter=--
nal state or reaction. Let P(¢,b,u) be the.probability that a collision, with ¢ylin-
drical angular orientation ¢, miss distance b, and relative velacity u, results in
reaction. The rate of reaction is defined as the total number of reactions produced
in unit volume in unit time

R = n,n,s [J’ I&Im P(,b,u) £ (wu du b gpmq@] (2.15)_
0 0.90 )

Thé quantity in brackets is, by definition, the rate coefficient a for the reaction.

in question. The integration over the parameters b and ¢ yields the reaction cross
section S(u)

Su) = erp(cp,b,u)b db do (2.16)
0 0

which is a function only of the relative velocity wu. In terms of this parameter the

rate-coefficlent is

a =S ."m.s(u)uf(u)du (2.17)
0

Thus, the rate coefficient o physically répresents the volume swept out in unit
time by a disc of cross section S(u) moving with the velocity u, all weighted with
the velocity distribution funection f(u) and averaged over all velocities; its dimen-~
sions are cm’/sec.

The definitions above have been left as general as possible so that the proce-
dures for evaluating the cross sections and rate coefficients can be visualized even
for nonequilibrium velocity distribution functions.. The only assumption which has
been made is that the distribution functions are isotropic, that is, that the gas
phase in which reaction occurs is without appreciable gradients.. 1In practice, it is
usually safe to assume that the kinetic motions are in an equilibrium Maxwell- -
Boltzmann distribution at a given temperature T, since this distribution normally
establishes itself much faster than the reactions of interest. . In cases where the

internal .energy establishes equilibrium on the same time scale as the kinetic motions, .

which is often the c¢ase with rotational energy of molecules, for example, the reac-
tion can merely be considered as infinitely fast for most practical engineering needs.
For Maxwell=Boltzmann velocity distributions (refs. 1 and 2) then, we have
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> o @1‘“2’3/' my (%) +yy ot 2y) - my(x; Yy +2y) dx,dy,dz dx dy d2
£,5,du,d, =~y e*P|— 26T a0 02, 0,0, 08,
L .
(mm, )8 /? CH(RE + 42+ 5%) - (iR + i-; +8)7., ., "
s | —TRRT dX dY. dZ df didf,

Integrating Eq. (2.18) over.all center=of-mass.velocity components and multiplying.
by (4mu)?, as defined in Eq. (2.13), we obtain

8/2
£(u) = 4mu® Zﬁﬁ)“ exp (~uu’ /2kT) (2.19)

for the distribution function of the encounters between two particles with relative.
velocity magnitude wu. This.distribution is of course normalized; the integration
over all _u . yields unity.

The reaction rate coefficient of Eq. (2.17) may now be_expressed . ... _

3/2 po - )
o (T -'As_ﬂ(z'r‘:k'r) - J; S(u) exp(-uu‘/ZkT)uadu
(2.20)
-1 glsz)‘/z-
s \ mu

fms(x,) exp(=x)x dx
0

The second expression in Eq. (2.20) has been transformed to the dimensionless kinetic _
energy variable x = pu?/2kT. The radical in front_of the integral is just the mean
velocity u

u = fuf(u),du = 47 (_21:1_1@)9/2‘,'” ul exp(—uuz‘/ZkT)du‘
. . 0 .

(2.21)
()"

so the rate coefficlient may be expressed
a(T) -lsl'f S(x) exp(-x)x dx ___ _ (2.22)
0.

The integral in Eq. (2.22) represents the average cross section weighted by the
Maxwell-Boltzm7nn distribution function. The rate coefficient &(T) will vary as the
product of T2

ing the functional dependence.of this average cross section. To.proceed further than
this we must know the form of the cross section function, either experimentally or.
theoretically..
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2.7 DEPENDENCE OF APPARENT ACTIVATION ENERGY ON CROSS SECTION FUNCTION

Unfortunately, very little is known about cross sections at low collision ener=--
gles where they contribute mést.to the integral of Eq. (2.22).. From our concept of
an activation energy leading to a potential crossing where the transition can take -
place with reasonable probability, we know.that the cross seétion must vanish until
the kinetic energy of collision at least reaches the activation energy E*, All our
experimental experieénce indicates that. the cross sections increase very rapidly above
E* -until . they reach some maximum valué, whiéh i$ 1léss than the total cross section
for all processes, including elastic scattéring. As discussed previously, this total

cross -section is the order.of»"“lo-15 em? for most atoms and simple moleculés, and for —— ... ..."

cases where a single highly probable reaction is involved, thé maximum in the reac-
tion.cross section may approach this total., At still higher-energies the cross sec-
tions deécréase again, generally as the-inverse square root of collision energy, and
become vanishingly small at collision energies that are two or. three orders of magni- .
tude greater than the threshold activation energy. The form of a typical reaction
cross section function is sketched in. figure 2.4. .

The simplest functional form we can 0 B
use to empirically approximate the behav- OFR!’G:'NAL PAGE g
ior.of 'real cross sections is a step g OOR QUALITY
function 2
. 2
s=0, E < E* 2
(2.23) g
=S , E*<E “@
(o) . o
[72]
€
where S, is some.constant value. The ©
rate»caefficient for such a cross section
is, from Eq. (2.22)
as ® E*
a(T) = _gg» e ¥y dx KINETIC ENERGY OF RELATIVE MOTION, log €
%
S x ok Figure 2.4~ Typical form for reaction
= :?-ﬁ(x* + e X (2.24) cross section .as a function of colli-

sion energy.

whére x* is the dimensionless activation energy E*/kT. The variation of u(x*+1)
with_ temperature is so weak compared with the variation of.the éxponential term
¢"X*  that for many practical purposeés Eq. (2.24) is the same as the Arrhenius. func-
tion, whére the coefficiént in front of the éxponential is taken to be constant.
Expressing Eq. (2.24) in terms of the paraméter B8 = (kT)™?

S 1/2 *

fe) ) - R

o= (—ﬁ%) (BEX + 1)ePE (2.25)

one finds the slope of the logarithm of o as a function of B8

dlno &, E* 1 _ & 1oL (LY 1y
ap E +—B.E*'_+_T 28 -E [1-W+(W) -(W) + .. .](2.26)
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For many chemical reactions E* 1s the order of 1 eV or more, while the thermal
energy KT at normal temperatures is the order of. (1/40) eV; for such cases the
factor (2BE*)”! ' 1s the order of .10”%, small compared with unity. Thus, the slope of
an Arrhenius plot (a plot ¢f 1n & vs B) for the stép-functlon c¢ross section,

Eq. (2.23), would very ¢losely be equal to (-E¥), except at rather high temperatures
where it would become somewhat less negative.

From this point on we shall treat the interaction potential as spherically sym-
metric, as this greatly simplifies the analysis. Strictly speaking, the potential .
is spherically symmetric only for a single electron in collision with an atom or ion
having outer ‘electrons.all in the. s state; atomic or molecular wave functions
having finite angular momentum have lobes, and molecular wave functions.are also
elongated about the interatomic bond directions. Aspherical effects may be particu--
larly important where strong dipole moments exist. Nevertheless, it is common prac-
tice to average the potential over all angular configurations to .obtain an efféctive
average spherical potential for use in quantitative calculations., The rationale for
this procedure is that the effective potential répresents an average. for a multitude
of collisions in which all possible initial angular orientations are equally-probable. .-
In practice the average potential gives reasonably good results for many simple mole~
cules for which the permanent dipole moments are not foo strong.

The cross section is not really a step function as assumed in Eq. (2.23), of
course, but varies as sketched in figure 2.4. Because of the strong éxponéntial
weighting of the cross section at thermal collision energies near KT by the
Maxwell-Boltzmann kinetic energy_distribution (sée Eq. (2.20)), the important part
of the function for our purposes is the region just above the threshold E*. 1In this
region the cross sections for all reactions. are observed to increase as a.simple power
of collision energy. Part of this increase is due to.the requirement that angular ...
momentum be conserved during collision, the remaining increase is.dué to theée varia-.
tion in transition probanility at the potéential crossing as the collision velocity
changes.

The conservation of angular momentum in collision may be expressed in terms of
the angle ¢ of figure 2.3

urzw = yub 2.27)

The energy is also conserved during collision, of.course
H /o2 22 uuz
E (r- +.r P ) + V(r) = T - (2.28)

Substituting y from Eq. (2.27) into Eq.. (2.28), one.obtains an expression for r
2, 2% /2

u r?.

At the point of closest approach in.the.trajectory, r,, the derivative r vanishes
and we have a relation between the impact. parameter and r,

2 ZV(I' ) V(r )-

where E is the initial kinetic energy. Now if the reaction.is to occur, r, must
be. less than or. equal to rys, the potential crossing point. At this point the
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potential V43 just the activation encrgy E%  Thus, the maximum value which the .
impact parameter can have if the point of closest approachk %s to be less than or .

equal to ro is e

Y _EX
) ~l'-F
1'0-_

All larger values of the impact parameter will result in.a deflection of the colli-
L slon partners at distances greater than Yoo Thus, we may express the effective
| ‘ spherical symmetric¢ cross section :

ORIGINAL PAGE 1§ _
OF POOR QUALITY

(2.31)

where . the. factor (1 - EM/R) . the fraction of systems with initial miss distance
_ less than r,. which reach the transition point according to comservation of angulac
g : momentum, and p- is the probability of transition at the conflguration ro. The
i latter is analyzed.by the Landau-Zener .theory which predicts.a rapid increase of P
with.collision snergy near. threshold. (ref. 3). This theory will be considered in ..
4 some detail later; for the moment we will .account for tlids factor empirically.by
E adding another factor ((E/E*) - D™= 5 the cross section function (ref. 4)
\ .
'

. E® E m=1
B

where §, is some constant and m
: cross section as a function of the 1
. threshold.. This slope is typically
§ observed.

L 2 E¥ *
E : S & n'rc'p(l .-=.~-l§-)w.— E*" < E
t

(2.32)

is the observed slope of the logarithm of the
ogarithm of excess collision energy near the
between 1 and 3.for cross sections that are

The cross section of Eq. (2.32) can be integrated exactly in Eq. (2.22) to give

-BE* I'(m + 1)

by o 0k s 2.3
3 Q= uSO e (eEmym-1 .. RE 1 (2.33)
As indicated, the approximation is useful where BE*->» 1, It may be noied that an
additional factor

1 + (m + 1)/BE*- is. often given in the literature, but the second.
term in this factor is meaningless; it results from the unrealistic divergence of

the cross section at high collision. energies when the Cross section is assumed to

have the. form. § = So [ (E/E*) ~-1]M, The second .order term in (BE*)™% -{g always
negative, not positive, when cross sections aré used that approach a proper asymptotic
limit, or decrease, at high~collision energy. These. higher order terms are of Jdittle

consequence anyway for RE* ~ 10, an inequality that is edsily satisfied for many
reactions..

However, rcactions .do exist where Ex
temperatures of interest,. for example the ionization of highly excited electroni¢
species.. In such cases it is necessary. to choose a cross-section function that has. a.
more realistic dasymptotic behavior than Eq. (2.32)., The transition probability p

cannot exceed unity, so-the cross section at high collision energles has an upper.
bound with the functional form
. . /. E®
S = So(l “ﬁ:‘)

may-bé small compared with kT at the

(2. 34)
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Using this upper bound in Eq. (2.22) one obtains the rate coefficient

&= T ePEY  apk <<l . (2.35)

‘ The apparent activation energy will be defined as the negative slope of an
;7. t --  Arrhenius plot. (the. plot of &n o vs B), and in the limiting cases considered this
. quantity approaches

d #n o 2m - 1
- x | > *
B FFs T T T
1 (2.36)
N T
BER << T ¥ ¥ 7§ —
*‘ E* eV Near room temperature B = 40 eV™®
2 ‘Na+Nz 158 and the correction terms are a few hun-
——-——-—Nz2¢+NO 93 dredths electron volt. Thus, where the
—-——Nz+CO. 119.. activation. energy is the order of 1 eV,
——eee— Np+0p; 122 . it is perfectly justified to equate the
10°18 = reerseesensensCO4CO . 140, slope of the Arrhenius plot with the true
~——-—— Np+CO, 138 . : activation energy, as is usually done by
——--—— Nz +CHy chemists. However, at high temperatures
——=--— 02+ 0y the correction term becomes appreciable,.

For temperatures near 104 K, for example,
g ~1 eV'l, and the corrections are between
0.5 eV.and 1.5 eV (for m = 2) according
to the above limits. These are not at .all
negligible corrections. Note.that the
curvature of the Arrhenius plot is not in .
question here; the curvature will usually
be negligible .over the temperature range ...
involved in a typical experiment and the
data may plot as a very nice straight line.
What 1s. not generally appreciated is that
the true activation energy cannot.be.eval-.
uated from the slope of this line if the
data are taken at high temperature, with-
out some knowledge of the form of .the
cross-section function. Normally & is
not measured over a wide enough _range of
temperature and with sufficient reproduci-
bility in shock tube experiments to deter--
- _ mine.a reliable value for m. Molecular
/ e /7 ' beam experiments have.been of limited help
Ry because accurate measurements are diffi-

N sssecssccncs Ar+ Ar

10-16 |~

10V —

10-18 [~

IONIZATION CROSS SECTION, em?

1018~

. cult to make near-threshold. A number of
1U40.f | | heavy particle impact ionization cross
1 10 100 1000 sections have been measured by Utterback
ENERGY ABOVE THRESHOLD, E - £*, eV (ref. 5) within an electron volt or so of .

S threshold. These are summarized in fig-
. ¥ Figure 2.5- Measured ionization cross sec- ure 2.5 on a plot of log S vs log (E - E*),
‘ tions for various collision partners.
as a function of kinetic energy in
excess of threshold.
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The values of the slope m generally 10°%®—  OF POOR QUALLLX
range between 2 and 3. for this élass of
reaction.,. Kieffer and Dunn (vef, 6) sum-
marized a number of measured electron 16 |-
impaét ionization cross sections, shown B,

in figure 2.6, and for this class of
reaction the slope m 1s characterized. .
by values between 1 and 2. Measured ... ..

10-17 e ) m— amm— X
cross sections for other classes of ~ S —
reaction are not generally available § s ¢ e A
near threshold, but it is likely that 2 e NO, €O, Ny
these will fit the same general type of 1018~ - N .
functional dependence, with slopes the B

— 8 ¢ ¢ ST— 02

order of 2.

——— co—

1019 f - tesecene Hy

------'N.
QOOOOOOQOQCfH
— n c— e
10-20 ] ] J

A 1 10 . 100
(¢ ~¢*), eV

Figure 2.6- Cross sections for ionization
by electron impact.

Exercide 2.1t A cross scction often used in réaction.rate litervature is

m
y = JE. S
S S ( ry l)

-

X - %ﬁ% ~ 8E

where

Evaluate the rate coeffi{cient a and the apparent activation energy -(d in u/ﬁﬁ) for thia croas scction. Show
that the first order terms are the samo as obtained for § ® $u(1 = x*/x)(x/x* = 130 ', but that the next order terms in
(BE®) ™" give.an increase fn o and a-decrease.in -(d tn a/dg8). Don't forget that u 4is proportional to g§~!/?

Bxercise 2.2t The cross section-above diverges unrealistically .at large collision energy. Consider the cross
scction

" xR\
§ - Su( X

which approaches.the limit S, at large x. Evaluate a and -(d €n a/dB) for this cross section and show that the leading
term is the same as above, but that. the next order terms in (BE®)™! decrease the rate coefficient o and decrease the
apparent activation enérgy.

Hint: oxpand X" about ¥,
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To give a concrete example of an application 6f some of the preceding con-
cepts, conaider the dissociative recombination reaction
v}
r ) .
O . I e— (2.37)
f

This reac¢tion is one of the dominant mechanisms leading to ionization and electron
recombination in hypersonic airflow., The forward rate for this reaction was first
measured by Lin, Neal, and Fyfe (ref. 7). Lin.and Tear (ref. 8) proposed the dis-.
sociative recombination rate coefficient

ae = 0.003T-%/2 cm®/sec (2.38)__

to fit their experimental data. This.value has been widely used in calculations. of .
flow. about high-speed vehic¢les and of the electron densities in wake flow following
such vehicles, .

Subsequent experiments indicated.that while Eq. (2.38) may be correct at normal
temperatures, the rate should be somewhat higher at high temperatures as shown in.
figure 2.7. The high temperature experiments yield the reverse rate coefficient Oy
and at equilibrium, this is related .to
the forward rate with. the equilibrium con-

A stant K, -
21 .

10-6 - 17 ag = arKe. (2.39)

817 Some speculation has persisted about the
- 2292018 validity of this relation at the nonequil-
5 ibrium conditions where the measurements
are made (the experimenter cannot measure
a change in species concentration.at
equilibrium, of course),. but Rice (ref, 9) .
has long argued that the equilibrium con-
stant 1s still the ratio .of forward to.
reverse. rates under most nonequilibrium
conditions where reactions are measured,
as long as the Boltzmann distribution of
velocities is present. McLaren and Apple-~
ton (ref. 10) have confirmed these ideas.
with measurements of both forward and
reverse rates of vibrational excitation
of CO over a range of temperature., Accord-
ingly we assume that Eq. (2.39) is valid
for the reaction of present interest also,.

107
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Figure 2.7- Dissociative recombination and that. the trends shown by the data.in
rate for NO* 4+ e - N.+ 0. Data figure 2.7 are valid. Thompson (ref. 11),
nunbered by reference number. and Frohm and DeBoer (ref. 12) suggest

that the constant 0.003 in Eq. (2.38).

should be increased by a factor of 3;
Frohm and DeBoer point out that an increase by a factor of 2 actually fits the
original data of reference 8 better, The mean value given by Stein et al, (ref. 13)
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1s .twice as large as that glven by FEq. (2.38), and. Eckerman and Stern (ref. 14) and
Eschenroeder and Chen (ref..l15) both observed that increasing the rates by factors
up to 5 are consistent with measured electron decay in the wake of high speed
models., Dunn and. Lordd (ref, 16).also verified the ¢orrectness -of higher values at.
the higher temperatures, However, a number of loéw temperature measurements

(refs, 17-22) agree with Eq.. (2.38) (except for some estimates of upper atmosphere
electron recombination (refs. 23 and 24); these. latter should probably be weighted
lightly ¢ompared with the other evidence)., This anomaly led Sutton (ref., 25) to
use.values for wake calculations that are empirically faired between the high and
low temperature as shown on figure 2.7,

Hansen (ref. 26) pointed out th7t theOretica} grounds exist for predicting a
smooth variation of ag from a T-3/%2 ‘to a T %/2 dependence_as the temperature
increases.. Thé ionization is presumed to —
occur .when the N.+ O atoms interact along

a potential that intersects the.minimum

xIxt

4+
of .NOT(*%+) potential, figure 2.8 12 NO
(ref. 27). Of the many possible inter- - [ N(2P9) + 0(3p).. N(4s9) + o('s)
actions at .least one crossing will prob-- —
ably oc¢ur near this minimum, If this is 0= N(200) + 0(3P)
the case, then the threshold or activa- 3 625 i
tion energy E* --is.about the heat of™’ % 8 ) N4s9) + o(1D)
formation, which is from 0.4 to 2.8 eV . «
depending upon which of the;low lying . gL N NG9 + 0h)
electronic states of the atoms are 3
involved in the collision.. E

Z 44~

2 ‘
N(*S). 4 0(®P) = NOT(izt) - 2.8 eV 3 a
N(*s) + o(*D) + Not(*it) - 0.8 eV} (2.40) 1 . . .

0 ,
5 1.0 1.5 20 25 30. 35

N(*D) + 0(°P) » NO*(*z¥) - 0.4 ev INTERNUCLEAR DISTANCE, A
Higher lying atomic states are ignored Figure 2.8~ N + 0 and NOT interaction
because the reaction becomes exothermic potentials,.

and the population in these states will nor-
mally décrease exponentially without a ¢or-
responding increase in reaction probability.

Let r. be the equilibrium interatomic distance of the .NOT ion and assume that
a. fixed fraction p of the colliding atoms which reach this. crossing point. will form
NOt, and that the potentials are spherically symmetri¢. The reaction cross section
for the réverse reaction of Eq. (2.37) is then written as in Eq..(2.32). The frac--
tion p will be a function of collision.energy according to the Landau-Zener theory
(ref. 3), but we will merely choose some constant valué, the order of 10™2, which
fits the-function to theé.observed data. With this assumption the rate coefficient
is given by Eq. (2.35)

. _=E*/KT
@, = ﬁSo e (2.41)
where S, 1s a constant to be fit to experimental data and E* -is the activation
énergy, in this casé 2.8 eV. If.excited species are present in their. equilibrium
concentrations and have the same cross section function as Eq. (2.32), but with
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appropriacely shifted threshold energy E#%, the same expression is obtained for .«
as Eq. (2.33), with the same activation enc¢rgy, 2.8 eV, except that the constant 8§,
is multiplied by the sum

E(*8)g(0°R) + g(N*$)g(0™D) + g(N*D)g(0%P) _ 4X9 + 4x5 + 10x9 _ , .

where the symbols. g aré the degeneraciés of the atomic electronic states indicated.
This effect.of excited électroni¢ states will be considered later in chaptér IV. For
the present, it is pointed out that the éffec¢t produces a constant. factor which can .
be merely absorbed in the. empirical constant . S5, and the reversé rate coefficient o
varies as the-product of T 1/2 and .exp(~2.8 eV/KT).

Now the equilibrium constant for the. reaction in the forward .direction is the

product of the partition functions of the products divided by the product ¢f the par-.

tition functions of the reactants., all multiplied by the exponential of the factor
E*/KT
QNQo E*/KkT

Ke = W e . ' (2.43)

To a reasonably good approximation weé iiay take the electronic partition functions as
the ground state. degéneracies and treat NOT as.a harmonic oscillator with charac-.
teristic vibrational energy hw = 0.27 eV, The .temperature factors in the transla—
tional partition functions all cancel, and the temperature dépendence of the NOT

rotational and vibrational partition function remains. Thus, an approximate expres-

sion for Kg 1is _
X, = (7liieV) (1 _ o0.27 eV/kT)eZ.B eV/KT (2.44)

Accordingly the forward rate coefficient is, with §, = pﬂré = 3%x107%% cp?

-8
ap = o K, = 36%%%9@- (eV)l/z(l - 027 eV/kT) cma/sec (2.45)

Equation (2.45) is shown on figure 2.7 and is seen to follow the same treénds. as.
shown by the data. At high temperatures.where KT >> 0,27 eV, af varieées as Tfal?,
essentially the variation in U divided by the rotational and vibrational partition
functions of NOt. At lower temperature the vibrational partition funetion approaches
unity and of then varies as T"1/2, The latter variation agrees very well with the
measurements of Weller and Biondi (ref. 28) at 450 K and. 300 K which are the most
récent data shown in that temperature range. However, Weller and Biondi's data at
200 K is abnormally high in comparison with.the theory, which suggests that some
additional experimental or theoretical effect may yet bé unaccounted for at very low
temperatures.

2.9 CONCLUDING REMARKS

In conclusion, the reaction~rate mechanism can be interpreted as a potential .

curve -¢crossing transition, and the known form of reaction cross sections leads to the.

Arrhenius form of reaction-rate ccefficient, At low temperatures where kT 4is con=-
slderably less than the activation energy E*, the latter can be .accurately equated

to the negative slope of an Arrhenius plot (the plot of &n a vs 1/kT). However, at . .
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Bigh temporiatures where KU de the order of. B o greatoer, the negative glope ot
Chis plot s gredater than tho activation anorgy by aosbdable dmowat, and the -actdvae
tion onorgy can only be doduced 4n this way (. the ferm Wt drongepect ton tanges
Clon ear the threalwdd collision onorgy 8 Kiown,

The dissocdative recombination of NV amd o, which was uaed 10 L1 tuateate
the concepts ducusaad, 4a an oxample of the approximate naturo of current. vato
thooty and oxpariment as discussod i chapeor 1, The oxpordmental. dataave. widoly
scattoerad, fnconsistencion botwoon high temporature and. low tomporatuwre data okdst,
and the thooratical intorprotation of thae functional trondi-da vory olomeatary. Yot
this reaction, bovause of fta fmportance, (s at présent one of the beat. studied aad
woasurad reactions; the results ave muto testinony to the aeed O more rigovous
uant ttative treatmont ol reaction vates for ongineering purposes,.
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CHAPTER.III SIMPLE. AVAILABLE ENERGY THEORY OF DISSOCIATION RATES

3.1 SUMMARY ORIGINAL PAGE 15
OF- POOR QUALITY

A simple, avallable-energy theory is: developed which provides numerical estimates -
" of dissociation rates for diatomic and. triatomic molecules, which generally agree.with.

experimental data within a factor of 3, over a wide range of temperature and a variety
of ¢ollision partners. Since other theories, even though often rather complex, are .
unable to.provide better results, the available energy theory will probably remain a
useful model for many engineering purposes until rigorous computer calculations of
rate coefficients become economically and routinely available.

3.2 INTRODUCTION

A sizable number of théoretical models have been proposed for analysis of simple
reactions .such as. atom exchange and dissociation. One widely studied model is the
activated complex theory developed by Glasstone, Laidler, and Eyring (ref. 1). While.
this theory has been very useful conceptually, describing a short-lived molecular
complex existing at the saddle point of a potential surface in equilibrium with the.
normally stable molecular species of which it is composed, the theory has not been.
very useful quantitatively. . The reaction is .described as a vibration-like motion
along a trajectory crossing the saddlepoint, and the functional. form of the. crossing.
rate is derivable in part, but one is left with an undetermined transmission coeffi-
cient representing the fraction of systems which approach the saddlepoint that.actually
cross the barrier into. the domain of the reactlion products, the remainder is reflected .
back into. the domain .of the initial collision partners. This transmission coefficient
is uncertain by many orders of magnitude and its functional form is undetermined, in
general. It has been evaluated numerically only in a few special cases such as a
collinear H + H, + Hy, + H type atom exchange reaction.. Thus, for engineering pur-
poses. we seek a model that can be used for estimating dissociation rates. with greater
quantitative certainty.

Another theoretical approach that seems helpful is to. calculate the flux of
three~body recombination systems across a given surface S 1n phase space, which is
chosén to. separate the product domain from the reactant domain.,. In principle, this

method is appropriate wherever classical mechanics is adequate to describe the mggigngwmmmwmmﬁﬁmwwm;

involved. This flux F may be expressed

- ds/de =+
F=‘fp-|-gTa—d——STd0 (3.1

where p 4is the density of points in phase space, usually chosen to be the équilibrium
distribution density, S 15 the given surface defined as a function of the coordinates.
and their conjugate momenta, and dd ' is the vector surface element. The concept
"surface" means here a (2m - 1) dimensional subspace in 2m dimensional phase space,
where m is the appropriate number of Sets of coordinates and their conjugate

momenta. The derivative dS/dt. divided by |grad S| is the wvelocity with which the
phase points cross this surface. Wigner (ref. 2) shows that if such a surface is
properly chosen, namély So that the flux across thé surface is minimized, then the
recombination raté is rigorously detérminéd. Keck fref. 3) developed the method
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further by using variational methods to find minimum values for surfaces having plausi-
ble -functional forms. However, the calculations become increasingly intricate as one
attempts to define this surface more rigorously, and the extension of. the method to
even trilatomic molecule dissociation is discouragingly formidable. A related c¢lassi-
cal approach has been taken by Light and Arnstein (refs. 4 and 5), who solve the
Liouville equation for diatomic¢ molecule dissociation with the somewhat unrealistic
assumption that collisions are adiabatic. Once again, the solutions become so.intri-.
cate that. they muat be done numerically, and the extension to 'polyatomic molecule
dissociation .does not appear tractable.. A very simple model for dissoclation of .
diatomic molecules was proposed by Rice (ref., 6), in which he assumed that only

molecules with vibrational energy within kT of the dissociation.limit are capable of. . _

being dissoclated by collision. This simple concept was extended by Benson and

Fueno (ref...7), who_consider the recombination process as a cascade sequence of single
vibrational quantum jumps from the top vibrational levels. However, this model over-
looks the equally important role of rotational transitionsg in the .cascade
de-excitation process, as well as.the strongly anharmonic effects which occur in the
closely spaced vibrational levels near.the dissociation limit, which promote multiple
quantum transitions that. are difficult to include.

All of the above models, and others not menticned, provide certain conceptual.
insights.into the dissociation mechanism, but when the quantitative results are con-
sidered, one is left with the conclusion that.none of them, no matter how intricate.
the theory or the calculations performed, are superior for -engineering purposes to a
simple available energy theory described many years ago by Fowler and Guggenheim
(ref. 8). This model has been found to reproduce observed dissociation rates gener-.
ally within a factor of ten (ref..9), which even to the. present day is reasonably _
consistent with the uncertainties in experimental data. In spite of its obvious.
deficlencies as a modern scientific theory of reaction rates, it is still widely used
for making engineering estimates of rates in connection with fluid~flow problems, and
will probably céntinue to be used in this way until precise numerical computer quantum
solutions of rates become routinely and economically available. Therefore, a brief
analysis of the model is appropriate for.our purposes here. .

The availlable energy theory is similar in a way to the Wigner theory mentioned
above; the principal difference is that the surface S 1s now.taken to be a surface
in phase space which all collision systems must cross, whether-reactive or unreactive,
rather than a surface which divides the two as in the Wigner approach. The fraction
of the flux F- in Eq. (3.1) which.leads to reaction is simply taken to be that frac-
tion with energy in a given number of degrees of freedom. n, which equals or exceeds
the activation energy of the reaction, This fraction is the reaction probability used
in Eq. (2.16).

3.3 AVAILABLE ENERGY DISSOCIATION RATE MODEL

Consider._the general collision induced dissociation reaction
AB+M+>A+B +M__ (3.2)
with the rate coefficient o defined .-

18] - arali) (3.3)
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| where . the brackets .signify ¢oncentrations. The rate coefficient is expressed as a.
y collision.rate O and the probability P that dissociation results from a single
! collfplonrate S om@mepmmm— » o '“
\
| ) ‘
i ) S . T (3'4)
i

the symmetry number s 1is the same as discussed in ¢hap. 1I; s equals unity unless.
the molecules AB and M are identical, in which case it equals 2.

For a gas in equilibrium, 8 is given by

Q

2
g = (21ka)_3/2 J- %S(p)e p*/2ukT lmpzdp. (3.5)
0

where p- is the momentum of the colliding partners in center-of-mass coordinates,
¢ is the reduced mass of AB and M, and S(p) is the total collision cross section
for both favorable and unfavorable events.

The total cross.section is. not precisely known, but it is not difficult to esti~
mate within a factor of about 2, sufficient for present purposes. The wave functions
of outer electrons extend about the same range for all atoms and only slightly more
for diatomic molecules, such that all total cross sections are the order of
30%x107% cm®. As a next. .approximation, the ¢roas. section can be considered a weak

function of momentum p, namely the cross section appropriate for calculation of
viscosity:

. 8kuC
S. = Sm(l + -ﬁ\,—) (3.6)

whéere C 1is Sutherland's constant, a quantity the order of a few hundred degrees
Kelvin for most atoms and molecules, and S, is the constant cross section derived
from viscosity measurements at high temperatures compared with the Sutherland con-
stant. In this case, the collision rate given by Eq. (3.5) becomes.

skt /2 ( 4C ,
0= ‘—‘ITE:) Se 1'+-1r_f (3.7)

The crucial problem is to evaluate the probability factor P in Eq. (3.4).
Fowler. and Guggenheim (ref. 8) consider the surface S to be any surface normal to
the. component of momentum .between centers of the colliding particles, which the system
crosses prior to collision. The flux of systems across this surface -given by

Eq. (3.1) is just

P .
o 1 _-E/KT
Fom J’ . J' e dp,. . - dpkqu (3.8)

where the phase density p has been taken as the exponential Boltzmann distribution,
the. velocity across the surface is p,/u, and the surface element dpgdqy involves
all the momenta and their conjugate coordinates except q,, the coordinate that is
held éonstant over the surface §. Then, assuming that the energy which contributes
to the dissociation of AB. {nvolves just. n terms with only momenta or coordinates.
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squared, and that the equilibrium distribution of energy exlsts among those modes,
one finds. that the .fraction.of this flux where the.energy in these n .degrees of
freedom is greater than the dissociation energy D 1s given by

fa(“'l)/” exp(=E/KT)dE
D

P = ...}. . - N
ar) W2 ppme1y2]
The momenta and coordinates involved have been transformed to. the energy variable E,
which is the total énergy in the n modes considereéd and.includes the kinetic energ)
along the collision path. The factors in thé denominator aré just the normalization

constants required .so that the total probability goes to unity when both favorable ar .

unfavorable events are considered.

The problem remaining is that the number of degrees of freedom which should con-
tribute to dissociation is undefined. If only oné degree of freedom is considered, .
that is the kinetic energy associated with the momentum of.the collision partners
along the direction between centers, the probability P 1s generally too small. On
the other hand, if the total number of degrées.of fréedom involved .in the. two

particles AB and M is used, P is invariably much too large. In this dilemma, the .

¢oncepts provided by the activated complex theory. are helpful. The energy which
causes dissociation appears, at.least momentarily, in the internal energy modes of.
this complex. Since energy is consérved, we assume that n 1s the number of intern:
degrees of freedom which disappear when the complex breaks up, and that the remaining
degrees of freedom.carry away their full share of the energy distributed among these
degrees of freedom at equilibrium.

In general, the activated compléx may include the collision partner, but for the
present we consider this partner inért. The interaction potential in this. case is .
normally approximated by a very steep, short range, repulsive potential .which 1is
spherically symmetric with respect to.the closest atom of the molecule. The collisi
process is then conceived as a suddén discontinuity in.one component of the molecule
internal momentum modes, without change in the other momentum componént. or in the
atomic position coordinates. This model is sometimes . referred to as the sudden

approximation. The activated compléx is just the original molecule in which one com- .

ponent of internal momentum has suddenly taken a new. distribution independent of the
energy residing in the other modes. As in the Eyring theory (ref.. 1), the activated
molecule is taken to have a Boltzmann-like distribution of intérnal energies, except.
that we take the distribution to be bounded by the requirement that the molecule be
stable before.the collision event.

Now we choose the surface S, over which thé flux of systems is calculated, ortl
onal to the coordinate conjugate to the excited component of momentum — the compo-
nent which has sufféred the sudden discontinuity as a result of collision. (The
momentum coordinates can always be transformed by rotation to bring one component
parallel to the direction between atomic line of centers.at impact). Then the frac-
tion of the flux crossing S with energy in the excited mode between ek and &% + dt¢
and with residual energy in the reamining (n - 1) modes between ¢ and ¢ + d¢ 1s
given by

exp(-er/inder | ¢ 07 P axpce/imyde (3.1¢
KT~ pi(a - 1)/2) @m0 72

The denominators in Eq. (3.10) are just the normalization constants required.
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A somewhat subtle difference exists between the procedure above and the original
ersion of the available energy theory expounded by Fowler.and Guggenheim. Fowler
nd Guggenheim.chose a surface S which the systems cross prior to collision in
valuating the. flux of systems with sufficient energy to promote reaction; the problem
n this approach is that we do not know a priori how many modes of energy will con-
ribute to the-activation process. In the present development, a surface has been
hosen which the excited molecule crosses subsequent to collision; in this case the
umber of degrees of freedom which contribute to the dissociation process is clear,
ut we were forced to make an assumption about the distribution. of energy in one of
hese modes just after.the collision event, specifically we.chose the distribution to
e Boltzmann. . This 1is probably not a bad approximation for about 2/3 of the collision
vents, where from thé geometry of collision one expects a rotational mode.to be the.
xcited one; a.few collisions are known to be sufficient to promote & full Boltzmann
istribution in rotational states, for example. However, objections to this assump-
ion have been raised in connection with the remaining collisions which promote
ibrational transitions; the vibrational transition probabilities are very small at
sual collision velocities in gases and many collisions are required before a full
o0ltzmann distribution 1s reached in this case. Perhaps the.reason the assumption

'orks as well as it .does 1s because the dissociation process normally proceeds only at.

emperatures rather higher than the characteristic vibrational temperatures involved.
'his means, first of all, that multiple quantum jumps are produced and the process
ecomés classical 1like, in which the entire continuum spectrum .of energy can be
xecited in a single c¢ollision event, More important yet, high lying vibrational
tates aré available in the initial state before.the collision event, and the disso~
dation reactions occur primarily from the upper states within kT of the dissocia-
don 1limit, as postulated by Rice (ref. 6). These states lie close together, with
.trong anharmonic ¢oupling, and the classical type impulse approximation becomes a
‘easonable model in this case. Finally, the corrections for nonBoltzmann excitation
f vibrational modes by the collision would be applicable only in about 1/3 of the.
:0llision events anyway, which is well within the order of the approximation being
tonsidered. with the available energy theory here.

Exercise 3.1: Show that {f a portion of a molecule's energy € depends 6n n squared coordinates q (which may be
either momenta or position coordinates)

c-}j
{=2
the transformation from coordinate variables to the energy variable, transforms the integration volume element
'n" dq > c(n 2)/2

imy

Further show that the normalization to unity of a Boltzmann distribution of energy in these n .modes leads to
£(c) = exgs-CZkT!c(n /2
T(“)(k‘r)n 2

In Eq. (3.10) the energy € has an upper bound the order of the dissociation
mnergy D, whereas the normalization constant TI'[(n - 1)/2](kT)(n-1)/2  ig for an

mbounded Boltzmann distribution. However, for the temperatures of usual interest the

catio D/KT 1is considerably greater than unity, in which case the correction required
ls small., It will be neglected here for simplicity.

Integrating Eq. (3.10) over all combinations of internal energy greater than D,

#ith e* unbounded and with ¢ < D, one obtains
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Pl(n=1)/2] (k) P72

— 3 (3,11)

. @ /kr) 1) 12 p (-p /K
rf(m+l)/2] ___ J
This is the same result obtained by Fowler -and Guggenheim. (ref. 8), except that higher

order terms.in. kT/D are missing, terms which appear when the energy in each mode is-
consideréd .unbounded and independent.,
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In the dissocilation of diatomic moleculés, for example, four internal energy
degrees of freedom disappear when the molecule breaks apart: two rotational and two
vibrational degrees of freedom. (Recall .that a single vibrational mode has two
degrees of freedom, one associated with the kinetic energy of vibrational motion and
the other with the potential energy term. On the other hand, each rotational mode
has a single degree of freedom associated. with kinetic¢c energy of rotational motion; a
potential is not involved in these modes). Thus n =4 i1in this case, and the proba-.
bility factor to_be used in Eq. (3.4) for the raté coefficient is

P_, = -(%)1/%(%)3/2 e D/KT. (3.12)

3 Two.corrections to.the preceding model.for diatomic molecule dissociation can be
3 included rather simply. The rotation of the diatomic molecule contributes a térm

. 22/2ur® to the effective interatomic potential (ref. 3), where & 1is the angular.

3 momentum; thus, instead of integrating throughout a domain béunded by a simple sur-
face of constant energy D, one should integrate throughout an ellipsoid-like domain
in energy space depending upon the rotational state. In addition, the upper limit_of
the outer integral in Eq. (3.11) should be reduced by the initial energy in the i
excited mode, and the result averaged over this distribution of initial energy. For
purposes of approximation one can simply add an.average rotational barrier. equal to
kT (kT/2 for each of the two rotational modes involved), and take the initial energy
in the excited momentum mode as the avérage value kT/2. Then the probability_factor
for diatomic molecule dissociation becomes § ]

D+KT/2 ® 1
f el/2 exp (~e/KkT) f exp (-&*/kT)de*de
0

P - L D+kT-¢

n=4 r(3/2) (kT)*/% ’ (3.13)
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The factor 1/2. introduced into the pre-exponential term by these corréctions is
rather negligible, but the factor -1 1in the exponent is significant; it represents
thé correction for.the rotational barrier, that is the increase in dissociation
energy. that occurs when the molecule 1is rotating.

. A e S

Other corrections could be considered. For example anharmonic effects are-impor- K
tant at high temperaturé and the energy is no longer well approximated by a simple
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f quadratic sum, At. low temperatures quantum effects become noticeahle, and the inte~ —
' grations should all become summations. . However, the approximate nature of the avail-
: able energy model is inconsistent with a detailed analysis of higher order effects.

. We expec¢t the model toé provide only some numerical estimates of rate coefficlents;

' precise effeé¢ts of anharmonicities and quantization should be assessed with more

,  rigorous theoretical models..
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Consider .next a linear, triatomic molecule with a total of 10 degrees of internal .
freedom (2 rotational degrees of freedom, 4 degrees of freedom associated with the
two vibrational stretch modes,. _and 4 more associated with the two vibrational bending
modes). The diatomic .fraction formed in dissociation preserves 4 degrees of internal
. énergy, so the number of active degrees of freedom which disappear and contribute to
thé dissociation.process is taken to be 6. Once again the two rotational modes will .
be considered to increase the effective potential along any of the stretching or
bending coordinates by kT and D + kT/2 will be taken as the bound on the five.
active modes unexcited by the collision. .Then.the. probability factor becomes

D+kT/2 - © - i
f 53/2 exp (~e/kT) f exp(~e*/kT)de*{de . :
P o 0 L D+kT-¢ '

- r(s/2) (xm)’/? (3.14)

: 5/2 |
™ : )
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A nonlinear triatomic molecule has 9 degrees.of internal freedom (one more rota-
tional mode than the linear triatomic mclecule, but one less vibrational bending mode
with its 2 degrees of freedom). Thus n =5 for this case.. The three rotational
modes are considered to increase the effeé¢tive potential barrier along any stretching
coordinate by 3kT/2, and the four active modes which remain unexcited are.accordingly
bounded by D + kT. In this case the probability factor used in Eq. (3.4) becomes

D+kT @
J‘ e exp(~¢/kT) f exp(~e*/kT)de*|de.
p _ % L* D+3kT/2-¢

n=s ... I‘(Z)(kT)s 1 (3.15)

F IS Py o

e T TR o

, 2
= % (%— + 1) exp(-D/kT-‘ 3/2)

In the case of triatomic molecules, the collisions might be expected to excite at
least two modes of.internal energy. For example, an .end on collision with the linear
triatomic-molecule would..excite a component of momentum feeding both the symmetrical
and asymmetrical stretch vibrational modes. Similarly, a collision normal to the
molécular axis would simultaneously excite one of the bending vibrational modes and
one of the rotational modes. Two modes can be assumed to be excited merely by shift--
ing one mode from the integration over e (the energy in the unexcited modes) into the
integration over. e* (the energy in the excited modes). When this is done, the
results obtained are the same éxcept for some small higher-order terms. These are
negligible at temperatures of usual .interest (kT <<.D) as found in the following
exercise. Thus, the above model is ¢onsidered adequate for purposes of estimating
numerical values for dissociation rate constants.
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Exercise 3,2: Assume that collisfona éxéite exactly two degrees of freedom, in both linear triatomic molecules and
nénlinear triatomié moleculés, in unbounded Boltzmann energy diatributions., Calculate the probability that collision leads
to disadcidtion, Show that the resultd are the same as when the collision was assumed to excite just 1 degree of freedom
in the molacule, except for covrection terms the order of (D/kT)"’ 2 gmaller than the leading teérm,

3.4 COMPARISONS OF AVAILABLE ENERGY THEORY OF DISSOCIATION RATES WITH EXPERIMENT

Experimental values of dissociation rates are available for a number of diatomic
molecules and a few triatomic molecules., Up to 1965 these are summarized by Hansen
(ref...9); some more récent measurements have appeared, but as far as the author.is
aware noneé of these have to date significantly changed the situation, either in terms
of numerical valués or experimental scatter. The totality of all these results is

given in figure 3.1, where the logarithm of the ratio of the theoretical dissociation.

rate coefficient (given by the available energy theory) to the measured rate coeffi-
cients is shown as a function of the dimensionless temperature KkT/D.. The effective .
cross sections have been taken three times smaller than the viscosity cross sections
when inert atoms are the collision partners, equal to the viscosity cross sections
when stable molecules are the collision partners, and three times larger than the
viscosity cross sections when the collisions are with reactive atoms such as O or N.
This is in accord with the observed variatlon of 0, dissociation with different
collision.partners, for example. With this assumption, a large majority of the data
scatters within a factor of 3 about the predicted values. The single points repre-
sent mean values for sets of data measured under identical conditions by a single
éexperimental team; often the scatter in such data sets is the same order-as the range
of discrepancy between theory and expeéri-

ment. The figure includes dissociation 3r
rates for.both triatomic molecules. such
as .03, COn, N»0, NO2, and H»0 and a wide. 2k

variety of diatomic gases such as 02, Nz,
NO, and the halogens. Collision partners
include inert gases such as Ar and Xe,
the same or other diatomic molecules, and
O atoms. The various sources of data are
cited in reference 9. Without going into
all the details of each specific case, -1
the main point to bé emphasized is that
the available energy theory can be useful

log "/"‘exp
o

in estimating numerical’values of disso- - -2

clation ratés for a wide variety of col-

lision partners and over a wideé range of -3 L - !

temperature. Very likely the model would 001 e A 1.0
DIMENSIONLESS TEMPERATURE, kT/D .

be equally useful for some other types of
reaction such as atom exchange, though
detailed comparisons between the model
and data havé apparertly not been carried
out for such cases.

Figure 3.1~ Ratio of predicted to measured
dissociation rates as a function of
dimensionless temperature.
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Exeréise 3,31 You have ¥un expariments- in a shock tube using dilute mixtures of O {n Ar, 80 that you ¢an aadume the
gos kKinetié éollistons with Op are only with an Ar atém partner., Various atrength shock waved are produéed in this mixture
at.temperatures whiéh dirdoéiate the 02, and the Op concentration and vate of change of. concentration ard measured using
. WV abaorption at 1470 -X, following the method pioncered by Camac and Vaughan (ref, 10), The shocksekcited gan Lemperature.
‘ and denaity ave determined by measuring the shoek velocity, using welleknown velations betwéen shock properties and the
: shock Wave apeed_(réf, 1), -In this way the following data have been obtained:

i T, °K ed/mol aeé T, °K cé/mol seé T, °K ce/mol see
; " 7635 2,0%10'% — 5495 8.0x10° 4485 2,0%10°
| ( 7635 - 1.9x10%! 5235 - 4,2x10" 4330 1,2x10°
" 6945 9.5x10%° 5180 3.9x10% = 4330 8,4x10°
6535 7.0x10%° 5180 8,0x10? 4185~ 5,6x100
; . 6330 5.5%10° 5000 6.0x10° 4165- 7.6x10"
8 6330 5.0%10%° 5000 3.8%10° 4100. ~  4.0x10°
: : 6175 2.5x1010 - 4545 5,8x10° 3tos 1.3x10°
5880. - 3.2x10%¢ 4545 3,0x10% 3570 - 6.0x107
5555 1.4x10%° 475 2.4x10° 3450 4.0x°07
5465 . 1.2¢10%¢ 4610 . . 2.0x10%... 3460 e 3.94307

a) Graphically fit this data to.a simple Arrhenius formula .o = a, exp(~E/kT), find the.valuds of the éonstantu ny
and E which provide a best fit.

b) Now fit a formuld for the simple available-energy .theory to.this data
a = a, (D/KT)exp (~D/KT) (3.16)
whére the characteristic didsociation temperature, D/k, is 58, 970.X. How docs a, ¢comparé with the values found above?

¢) Calculate the mean square deviation of the.data from the two formulas above. Is the difference significant?

In figure 3.2 the data from exercise 3.3 above are plotted

; 3 D 1 1 D
in o - E-ln(if-f-i) f-f n vs (kT 1)

in order to.find a good fit of the data to the modified availableé energy formula of
Eq. (3.13), which was derived to fit this case of ¢ollision-induced dissociation of a
diatomic molecule.

i [O/KD) + (1/2)]3/%  -(D/kT+1)
: ° (o/kT) > £2
‘ a = 1.59x10** [(58,970/T) + (1/241?/2 e—(D/kT+l) cc/mol sec (3.17a)

(58,970/T) 7

The factor 1/2 in the pre-exponential term of Eqs. (3.17) and (3.17a) is rather
unimportant; however, the factor 1 in the exponent does make a noticeable difference

g about equally well.

Exercise 3.4: Calculaté the root mean square deviation of the data from thé formula of Eq: (3.17a) and also from the
fit to the formula of Eq. (3.16). 1Is there a signiftcant difference? What would nééd to be accomplished éxperimentally to
differentiaté between the varfous. formulas?. .

The -problem éncountered in fitting theoretical expressions to reaction raté data 18 that all réactions dpan a finite
range of tempetatute over which they-can be measured. 1If the reaction {8 véry slow, thé shotk tubé eéxperimenter will not
detect any reaction; 1f the rcaction is very fast, the reaction will.appear to be instantancous in terms of the spatial.or
temporal readlution of the instrumentation — in the present example, the finite width of the UV absorption beam through
which the reacting flow {8 streaming. A corredtion factor 1like:1/2 in the factor (D/KT + 1/2) is not going to bé noticed
as significant uatil the tomperature T becomes the same order as the charactéristic réaction température D/k;. at these .
temperatures the reaétion becomen instantaneous for moat practical purposes, .
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in the value of. a,. Nevertheless, elther equations 3.16 or 3,17 will fit the data . _ .
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Figure 3.2~ Dissociation rates of 02 produced by collisions with Ar.

3.5 CONCLUDING REMARKS |

The somewhat surprising thing about dissociation rate theories is.that very dif-

ferent models yield approximately the same sort of correlation with experiment, upon
Judicious adjustment of some of the semi-empirical factors that appear. These models
incorporate a range of "assumptions such as the applicability of optical selection
rules (ref. 7), of. purely classical behavior (ref. 2), of adiabatic type collisions.
(ref. 4), of impulsive type collisions, etc. Sometimes the more rigorous the model
attempts to be, the worse the correlation becomes (ref. 5). Thus, agreement with. 5
experimental data is not a sufficient test to differentiate.between the merits of one
o approach over another, though it is certainly a necessary condition that must be |
i : satisfied by any model deserving serious consideration. All of this again points. to.
;. the elemental stage of development of reaction rate theory, and the current need for
3 more rigorous approaches such as may be provided by modern computer. methods. In the
meantime, the available .energy model is as good or better than most other models,. it
is simpler and analytic, and it provides numerical approximations that are useful

for some engineering purposes, at least, if not fully satisfying from a rigorous
scientific point of view.

The available~energy theory cannot be expected to fi11l the need for a scientific
theory of reaction rates; it is too simplified and tied to purely classical concepts.
For example, it cannot be expected to work well for processes such as impact ioniza=
tion and electronic excitation where quantum transitions at a potential crossing are
important; however, for processes such as dissociation of molecules. composed of heavy

atoms, whose motions are classical, the simple .available energy theory seems to give
reasonably reliable results.
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CHAPTER IV EFFECTS OF EXCITED STATES ON REACTION RATES .

(o)
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Reaction ¢ross sections are observed to have the same type of functional depén-.
dence on excess collision energy_for the eéxcited states as they do for the ground
states of molecular gas.species.. Approximate expressions for the total rate coeffi-
cient including the effects of excited species are derived, and the effects on the
rates and on the apparent activation enérgy of reaction are assessed.

4.2 INTRODUCTION

Usually, chemical reactions are éxpressed by equations such as

A+B=C+D 4.1)

§ : 7ith corresponding forward and reverse rate expressions in terms. of a reaction rate
‘ :oefficient ag and o, and total species concentrations [A], [B], [C], and [D]

Re = o [A][B] , R. =« [C][D] (4.2)

{'» : Such an equation tacitly implies that the reaction takes place between ground state :
species. This can be misleading, for most reactions proceed predominantly from .
collisions involving excited states such as

A+B*~»>C+0D (4.3)

The cross sections for such collisions are. generally so much larger than for colli- S 1
sions involving ground state species, that this more than compensates for the effect
of the lower species concentrations of excited states that exist in. the usual
Boltzmann distribution among states. In discussing this problem we will focus atten- ,
tion on impact ionization reactions such as g %

A+B*>A+B +e (4.3a)

where A may be an atom or molecule or another electron, and B may be either an
atom or molecule. This will allow us to make useée of some direct cross-section mea-
surements which are available for this typé of reaction, but which are not as.
generally available for other reactions such as rotational and vibrational excita-
tion, atom exchange, and dissociation.

A number of c¢ross sections for. heavy particle-impact ionization have. been mea-
sured within an.electron volt or so of threshold; these are summarized in figure 2.5..
Similarly, the electron impact ionization cross sections are summarized in figure 2.6.
Although some structure.appears .on some of the curves and not on others, and quanti-
tative différencés thé order of 10 to 100 appear, all the measured ionization cross
sections have & similar form when. shown as functions of. impact energy above threshold,
E - Ex, Near threshold the logarithm of the ¢ross section increases linearly with
log(E - E*) with a nearly constant slope, m,. which is typically between 2 and 3 for
heavy particle-impact ionization and between 1 and 2 for electron-impact fonization.
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The cross-section functions then level off at about 10~%% to 10~*% cm? at impact
energles about 100 eV above threshold. The above- measurements are all for ground
state molecular species, and the cross-section function for excited state species will
also be needed in order to assess the effect of excited states on a reaction. of. this
type. Utterback and Van Zyl (ref. 1) found.

10-15

10-16
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N(A3x) + a(ls)
— Ny (x1E) + A(TS)

4
/

G'
9.3
15.6

Na(x1x) +Na(x1x) 16.6

e

that the form of the cross section for ioni-
zation of Nz by impact with Ar(%S) was .
--.essentially the same whether the N; was in
the ground state Nz (X'Z) or. the excited
state N2(A%L) as shown in figure 4.1.
equivalence of ground state and excited
state cross-section functions. is not neceés-

This-
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of the potential surfaces. and the gradients
of the surfaces at the transition point..
Moreover, colliding molecules usually enter
a network of transition points involving a
number of excited state potentials, as in .
figure 2.8, Thus, the total transition
probability can be a rather complex func-
tion, which undoubtedly accounts for some
of the structure and variation in cross-—
section magnitudes shown in . figures 2.5

and 2.6.. Nevertheless, on the average we
expect all cross sections to.have a similar
functional dependence. on the excess colli-
sion energy,. E - E*, and for.purposes of
approximating the effects of excited .states
in reaction processes we will assume that
all cross sections for the samé species have
the same slope, m, near threshold, regard-.
less of the state of excitation, but will
allow the constant S to inc¢rease as the.
size of the outer electron wave function
increases .in excited states.

-
o
1

-

~
¥

T

10-18

IONIZATION CROSS SECTION, cm?
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10°%0 L 4

1 10 100 1000
ENERGY ABOVE THRESHOLD, ¢ - ¢*, eV

Figure 4.1- Effect of electronic excita-
tion on cross section.

In accord with the above considerations, we assume.that all cross sections for
the same atom or molecule have a universal form of the following type:

* m-1
s = so(l - %—)(EI‘:; - 1) , Ek < E < 2B i

(4.4)
=50 - ) '

The factor (1 - E*/E) is just that required by conservation of angular momentum and
the factor (E/E* - 1)0! represents a probability that transition occurs between the
reactant and product potential surface once the collision. system reaches the reaction
corfiguration, as discussed in chapter II. The slope, m, is taken to be the same
constant for all states, and S, will be chosen as a different ¢onstant for. each
state, increasing with the size 6f the outer electron wave function. Although the
function .given by Eq. (4.4) does not decrease at very large impact energy E as it
should, this discrepancy will usually occur so far beyond the peak of the Boltzmann

2E* < E
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cnergy distribution that the error s nogligible as far as the vate coafficiont in

coneerned,

Integratdag the cross section of Bq. (4.4) dn Bq. (2.22) dne dbtains

- (L%
us,. o KK

(X W e

a Hy, (RER)

whore Hyp(REX) is given by the solid lines of figure 4.2..
(R - BY) is not greater than 3, a good .

. of the cross secction as a.function of

(4.5)

Provided. the slope of . tha

approximation for I, (8E¥) is obtained by loining the aswmptotdie limits

m=1

W, (RE*) = m!/(RE*) W REN S

SF‘!\‘ DS

-1 .

these limits are the dashed curves in figuve 4.2,

(4.6)
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where g and g% are the products of the degeneracies of reactant..and resultant
specles, respectively., Thus
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the constant factor (S,g/g*) may be interpreted as a total ¢ross. section for the
reverse reaction, with probability of de-exéitation equal to Hp, (BE*®) .,

4.3 EFFECT OF EXCITED STATES ON RATES

The total rate for .reaction between two molecular species with a multiplicity of
excited stactes is. given by

R = ann' = z aijni.n__') (4.9) .

1,3 .

where n 1s the total concentration (that is, X nyj), n is the concentration of
excited specieés in level i, and the primes designate tge second species involved.
The coefficients. ay: are given by equations such as (4.5). Although the concentra-
tions of excited species fall off as a Boltzmann distribution, the cross séctions and
the rate coefficients increase rapidly as the state of excitation increases, due to
the decrease in the activation energy E* for the upper states. This more.than
compensates for the decrease in population density, so that the rate coefficient is
dominated by the contribution from upper states.

Equation (4.9) can be rearranged to yield an explicit expression for the total
rate coefficient a, normalized to the rate-coefficient. for the ground state species

aoo.
o igéz :(h)(f&)(ﬁ)
%q. QQ' 4\%00/ \Tg ng

i,j

(4.10)

The index zero designates the ground state, Q 1is the partition function, go 1s the
ground-state degeneracy, and n has been replaced by n,Q/g,. For the assumed form
of the cross sections and Boltzmann populations of excited states, Eq. (4.10) becomes

o 80852, :(Sij (3133 ,Hm(sEfj))
%50 Ty " So00/\8,8/\H (BEZ,)

(4.11)

The constants Sij represent the appropriate asymptotic cross-section limits, and
Egj is the appropriate activation .energy, in th$s case I = Ey - E}, .where I {is.
the ground-state ionization energy and E; and E; are the electronic excitation
energy of states. i and j  for the two species, respectively.

A reaction is observed only when the products are out of equilibrium with the
reactants. Then the populations are not strictly Boltzmann.as assumed in Eq. (4.11)
but are given by solutions to a set.of master equations, such as formulated by Keck
and Carrier (ref., 2). These solutions will be discussed later; for the time being we
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merely use the result that the rate .coefficients are approximately duplicated if the.
Boltzmann distributions are simply truncated. about k1 . below the ionization limit.

The. principal result to note from Eq. (4.11) 1s that the exponmential factors in .

the population densities and in the rate coefficients have cancelled, Thus,. terms .
become increasingly larger.as the internal. energy of the reactants increases. The.

factor g.g, '/QQ'  is near unity, except at very high temperature, and can be disre- ...

garded. The ratio. is expected to be about the ratio of total scattering
cross sections, other %actors being assumed equal. The mean size.of atoms or mole-
cules, that is the_outer electron wave functions, varies about inversely as the
ionization energy; thus

2
: ) 2 - -1 - -y
Sij av(l‘i +'ré) N (I Ei) + (1! E,"I)
S ro + ro (I)"l + (I')—l

oo

where I and I' are the ground-state ionization energies. Values of 2 to 5 are
typical before cutoff is reached at KT  below the ionization limit. The ratio..
8184 /gogo is typically about 10, because excited states usually have somewhat
larger degeneracies than ground states due to the fact. that in most cares electron
spins ave not as completely paired in excited states. However, the factor which can
exceed unity by the greatest margin is

kN1 * m-1 :
cﬁaﬂim <. i (BE] ) E°° TEMPERATURE, K
m! H (BE* y < EX -~ E - E} 3015108 6 5 4 325x103,
16 T T T 1 T 1. 1 //r T 10
(4.13) /,,»’]U+Ar
This ratio can beé 10? or more. From “wr ,f/ 108
Eq. (4.8) it follows that when EI <.0, /
the terms decrease as exp(BE; ); thus the 12k /
effects of exothermic collisions are essen- / Nz *Np 105
tially negligible. oL / 0y +N,

The predicted cumulative effect of all "”—‘——:;;:;:-—j104
these factors is illustrated in figure (4.3) E? co+cé §
for heavy particle~impact ionization g sl :?
involving a number of different collision ; 0z +03 103
partners. The Boltzmann distributions have e
been truncated 2kT below the ionization 6[ Y4 NO +Np
limit for atoms, and the molecular states
are truncated kT below the dissociation 1102
limit in these calculations, the latter 4t ORIGINAL PAGE IS
accounting for depopulation of high molecu- OF FPGOR QUALITY
lar levels by escape to dissociated frac- 2k 410
tions. Although the calculations are. not
expected to give exact quantitative results,
in view of the various.approximations used, ) L — ) 1
the conclusion that. o can be many orders 0 1 2 ] 31 4 5
of magnitude larger than o,, 1is certainly (kT)™7, ev™
valid. The result indicates that colli- )
sions involving excited species will dom- Figure 4.3~ Effect of er:ited states on .
inate ionization reactions of this type, reaction rate.coefficients for._heavy
provided that the gas is dense enough so particle impact ionization.
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that populations. of the excited species.are established primarily by céllisions,
rather than radiative decay.

4.4 EFFECT OF EXCITED.STATES ON APPARENT ACTIVATION ENERGY

The derivative (-d %n &/dB) has traditionally béen equated with the true.activa-
tion energy by reaction chemists (i.e., the negative slope of an Arrhenius plot,.
n o vs B). However, the apparent activation energy of the reaction is

d fn a d 2n 0y, d 2 o/a,,
'—ds‘f=(‘ dB ._)'( ~ dp , (4.14)

The first term is the true activation energy E* plus corrections for.the shape of
the cross-section function, if any, as discussed in chapter II. The second term is
the decrease in apparent activation energy due to the increasing depopulation of~
upper levels at higher temperature.. This is just the slope of the curves on fig- -
ure 4.3. At_10" K these slopes are typically about 1 to 4 &V for the various reac-
tions shown, which are rather large corrections. At lower temperatures the slopes
vanish and the correction to the activation energy for the effect of excited states .
then becomes negligible, as doés the correction for the .shape of the cross-section
function.. Only at these low temperatures is it justified to equate the activation
energy with the slope of an Arrhenius plot. 1In the literature it is common to iden--
tify this slope with the internal energy of some particular.excited species which is
presumed to be formed in the rate-controlling step of the total process. However, at
high temperatures we see that this slope need not correspond with any particular
energy level. A case in point is the excitation-ionization of argon.

4.5 HEAVY PARTICLE IMPACT IONIZATION OF ARGON

Heavy particle-impact ionization is not a reaction of importance in any practical
problem; even the ionization of argon itself is rapidly dominated by électron-impact
ionization as soon as a small fraction of electrons aré formed, so at most, the heavy.
particle impact. ionization of argon is significant.only as a precursor event.which .
triggers the principal ionization reactions as argon is.suddenly heated in a shock
tube, for example. Nevertheless, the reaction has. been widely studied in shock tubes
(refs. 3-5) because it is one of the few reactions which can be produced in gas.phase .
in the shock tube without the ambiguity of competing reactions (at least during the
initial stage while electron concentrations are low), since there are no other inter-.
nal degrees of freedom for the argon atom. . The lonization potential of. argon
(15.68 eV) 1s considerably lower than that. of He (24.46 eV) and of Ne (21.47 eV), so
the reaction is considerably easier to éxcite in argon with normal shock tube operat-

ing conditions, than in the latter. two noble gas tést specimens. Krypton (ionization .

potential 13.93 eV) and Xenon (ionization potential 12.08.eV) are even easier .to
ionize, and some ionization rate measurements have been made with sho¢k tubes for
these gases as well (ref. 5). Some recent measurements made by Schneider and Park
(ref. 6) suggest that even these simplé reactions may be masked by ionization of NaCl
which is absorbed from the natural atmosphere. on the. shock tube walls and deadsorbed
during the test interval, so at this point it is not clear whether the heavy particle-
impact ionization of argon has even been measured.correctly. However, the analysis of
the -experiment will nevertheless be instructive for our purposes here. Moreover,
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3 : heavy particle impact ionization of argon is the only reaction measured in the shock

f tube for which a corresponding cross section has. been measured with molecular beam

: equipment. (ref. 7). Thus, the reaction takes on major significance from a sc¢ientific
viewpoint, even if not from an applications viewpoint, because it is the only reac-
tion where. some kind of compariséon can be -made between a measured. rate coefficient and
a measured cross section. Unfortunately, the ¢ross sections have not been measured
closely enough to threshold to provide a really convincing comparison, but again. the.
comparisons.which are possible provide some valuable insight into the reaction
process.

Thé measurements of .the bulk rates (refs. 3-5) differ from one another by a fac-~
tor of ‘about 10 as shown in. figure 4.4, but all_experimenters find an apparent activa-
tion energy (-d &n a/dB) of about 11.5 eV.
The fact that 11.5 eV is the energy of the

, 39 x 10~131/2 e~ 1218, cm3/sec ,m=0
first excited multiplet.of electronic "

14 % 107135121118 8/s0c m=1..

states of Ar (including one metastable &%) 6.1%10°135-3/2¢-10.18 (113/cec m=2
level 4s[3/2]% with J =-2, which does ¢ omsee.m
. not have a dipole transition to the ground
3 level S state of argon) naturally led
v f all investigators to conclude that the pro- . -40 -
~ duction of excited Ar was rate controlling 10-18
in the two-step process.
HARWELL AND
45 |- JAHN
Ar + Arzif%fztAx + Ar* , E* = 11.5 eV 1020 .
rev (4.14a) E. ;
* + * = g2 HOF ?
Ar + Ar “57r Ar + Ar” + e, E¥=4.2eV g 1c MCLAREN AND . KELLY :
v, (4.14b) & HOBSON . '
—l ol 1 1 1 . J ;
.' If the concentration of Ar* is steady, the 1020~ 884 1.2 1.6 2.0 24 ; ‘
: effective rate constant is ev-l . i 1
2 |
Lt L } |
a - ao’ (4.15) 12,000 10,000 8000 6000
%r eff Cray + o : TEMPERATURE, K i
3 .

A Figure 4.4- Argon ionization rate
H
OR!GINAL PAGE Is coefficient.

.

Thus, if a' >> apqo,s the first step of the reaction is rate controlling, aGgff = &, _ :

and the activation energy is about 11.5 eV, neglecting the effects of the shape of . % j
the cross-section function. On the other hand, if a''<< apeys then the effective b
rate coefficient is agff >~ aa'/arey, and the activation energy is about the sum of the i

two activation energies, or the full ionization potential, 15.7 eV. At temperatures ! p
where the two rate coefficients are about equal, intermediate values of the apparent,
activation energy are expected.

Incidentally, the three equations shown for o in figure 4.4 all fit Kelley's !
data (ref. 4) equally well, and illustrate how the bulk rate data taken over a narrow
range. of temperature are not useful for determining the shape 05 the c;oss-seCtiov !
function. The three equations with pre-exponential factors .81/2, g~2/2, and g-3/2
correspond to cross section functions with slopes m = 0, 1, and 2, respectively.

57




L

Dt nesitiuina S cOt NS A D SATINSNE st SRR e R SO et i A e A

The data. would need to be extended over a range of temperature difference of about a
factor of 10, rather_than a factor of 2, to differentiate between these functiona.

As. we see, the first step in the .assumed reaction, Eq. (4.l4a) is rate control-
ling only when opey << a'. Except at very high temperature, we do not expect this
inequality to hold, since the second step requires 4.2 eV activation energy. The
inequality would require an.abnormally small cross section for the de-excitation
process, Eq...(4.14a), which would then violate the principle of detailed balancing.
For example, i1f we take the slope of the ¢ross-section functions to be m = 2, for
both the excitation and ionization processes of Eq. (4.14)

4 = §S (ggg)e-s'{/kr__m
I\ E¥ ORIGINAL PAGE IS
OF POOR QUALITY
; *
at = T, (D)o /T (4.17)
From detailed balancing o
: _pk
o . (%t) - 8% TEI/KT (4.18)
%rev o) eq 8
50 for the two level model the ratio arev/a' "is given by
“rey 8 Ef S QES/KT (4.19)
a' gk E¥ S, ) :

The degeneracy ratio g*/g. 1is 12 for the case of argon if all states of the low
lying multiplet are assumed to. participate, 5 1f only the metastable state partici--
pates and the remaining states are assumed to decay by radiative transition. The
latter assumption would be appropriate at .low densities where the radiative decay
rate is rapid compared with the collision frequency, the former would be appropriate
at high densities where the collision frequency is the larger. The cross sections ..
will again be taken proportional to the size of the wave function overlap with the
wave function assumed to vary in size as the inverse of the remaining ionization
energy

2

8, (To *-T§ /5.7 + @/u.Y U
Thus, the product of ratios _
Ef S
7 < B e s | (4.21)
o 2 1

is bracketed. by the low--and high-density limits, both of which are the order of 100..
On the other hand, the exponential factor, exp(ES/kT), in Eq. (4.19) is the order of
4,000 at tcmperatures the order of. 5,000 K, and decreases to the order of 100.only at
temperatures_the order of 10,000 K. Thus, we do not expect that the two-step
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collision process assumed in Eq. (4.14) will become important in the heavy particle
impact ionization of Ar except at temperatures the order of 10,000 K.and higher, which
are at the upper limits of the measurements made (see fig. 4.4). At lower tempera-
tures and sufficiently high density sé that the radiative decay processes do not
deplete the upper states, we expect a c¢ollision induced, ladder c¢limbing process to
occur along the ladder of available electronic states, which will establish a
Boltzmann-1like. distribution in the states of energy lower than about 2kT below the
ionization limit. This leads to the large increase in observed rate coefficient
indicated by the dashed line on figure 4.2, with its associated effects on the appar-
ent activation energy. The slope of the argon curve on figure 4.3 is about 4 eV at
10,000 K, which gives.an apparent activation energy of about 11.7_eV, well within the.
experimental uncertainty of the data in this case, 11.5 # 0.5 eV. The ground-state
cross. section Sy, a 4x107%% cm?, with the slope m = 2, provides a reasonably good ..
fit to the experimental data in this case, where the Boltzmann limit with a cutoff
2kT.—below the ilonization limit is assumed in the calculations (ref. 8).

Once again, an adjustment of coefficients to provide a favorable comparison
between theory and experiment is only a necessary condition, but not a sufficient
condition to validate the theoretical model. The two.step model can equally well be
fit to experiment. All that has been demonstrated here is that more factors need to
be considered than in the simple two step process. In.fact, the ionizing argon gas is
yet mare complicated than our models have so far-allowed.. The fact that radiative
decay should be included in the model has already been alluded to. Moreover, excited
electronic states of .argon, as well as the other noble gases,.can form stable.dimers
Ar:, due to the fact that the electron spin functions are not necessarily all paired
and bonding electronic pairs can be formed betweeén two atoms. The spectra from such
noble gas dimers had .long been observed by spectroscopists, and these.dimers are now
produced in electric discharge. to provide inverted populations.for violet gas lasers..

Thus,,Ar§ should be considered as one of the excited species available in the reaction.

process, and the observed activation energy could be as low as.the lowest bound state
energy. At present we do not know what this lowest bound state energy is, but it
would at least be less than the lowest excited state atomic energy which is 11.5 eV
for the case of Ar. The increased strength of observed spectral lines, and the
experience with dimer lasers, suggeést that the binding energy increases with molecular
weight of the noble gas. That is, Xez is. more stable than Kr} which is more stable
than Ar*. Indeed, McLaren and Hobson (ref.. 5) observe apparent ac¢tivation energies
for the ionization of these species which are well below-the enérgy of the lowest
electronically excited atomic states.. Thus, in spite of all the experimental activ=-
ity and analysis that have been done on noble gas ionization by heavy particle impact,
the problem still contains several unresolved questions. Our analysis here serves
primarily to indicate what some of the factors which need to be considered are, and
what. their qualitative effects may be.

One assumption used repeatedly in the above calculations on the effect of excited.

states at high densities, where the-population of excited states is collision domi-
nated rather than radiation decay dominated, is that a pseudo Boltzmann distribution
is set up in the excited states which is truncated the order of kT below some disso-
ciation or ionization limit.. In Chapter V we will show that this is a reasonable
approximation to the more exact distributions which are found as solutions to the

master. equations of reaction,_ involving reaction paths.from a .multiplicity of excited .

state levels.
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4.6 CONCLUDING-REMARKS

Because of the Boltzmann distribution of collision velocities that exists in gas
phase, most reactions occur from excited levels that have an activation energy, with
respect to the reaction products, that is .the order-of kT ~ér .less. In an equilib-
rium gas the excited species number.densities are all related to the ground. state
species by the Boltzmann distribution, and in this case the réaction rate coefficients
can.be expressed in a form that is appropriate for reaction involving ground state
specles, having the full activation energy of these ground state species, . However,
this formulation fails to call attention to some important features of .the reaction
process; namely, that rates can be orders of magnitude higher than are.reasonable for.
ground state specles, when the known magnitudes of the cross sections are taken into
account, and that the apparent activation energy can.be considerably less than the
full activation energy of the ground state species, except at relatively low tempera-
tures. Even in nonequilibrium gases,. the reaction probabilities are so.greatly
enhanced for the upper excited states, that reaction paths will usually proceéd from .
these states; rigorous calculations of reaction rates and activation energies thus
require solutions to a set of master equations for the nonequilibrium distribution.of
an excited state population,

ORIGINAL PAGE g
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CHAPTER V MASTER EQUATIONS FOR CHEMICALLY REACTING GASES

5.1 SUMMARY ‘ ORIGINAL PAGE IS.
’ OF POOR QUALITY

The master equations are derived for.simple dissociating diatomic gases and for
ionizing atomic gases, for the case where inert particle collisions dominate. the pro- :
cess.. Solutions to these equations for the pseudosteady phase of the process are i
discussed, which is usually the phase of most concern to the experimenter. The trun-. .. '
cation of the number of excited states involved in the ionization process by various
perturbation interactions with other particles.in the gas is considered, and sample
solutions for the pseudosteady, nonequilibrium distribution of excited states.in an
ionizing atomic gas are given. The results for the lonization rates obtained are
found to. be duplicated quite well when the nonequilibrium distribution is replaced by
a Boltzmann distribution truncated about 1.5 kT below the ionization limit. This .
simple approximation eliminates the need for obtaining the solutions to the set of
master equations, and is as accurate as the current state of theory and experiment
warrants.

5.2 INTRODUCTION —

In the. last chapter we found that chemical reactions have a strong tendency to
occur from upper excited states. This means that up to the point where full equilib-
o rium balancing is achieved, the reaction is a drain on.the population of these upper
3 states, and a nonequilibrium distribution of some sort establishes itself. in these
upper states of the.gas molecules as. the reaction proceeds to completion. The solu-
tion for this nonequilibrium distribution.is obtained from a set of master equations,
such as those derived by Keck and Carrier. (ref. 1), which describe the rates of popu-
lation of each molecular state due to reactions proceeding from other states of the
same molecules, of both higher and lower energy. The reactions leading from one state
to another can occur either by collision or by radiative transition. In order to ;
simplify the analysis we shall assume gas densities that are high enough so that col- i
1ision induced transitions are rapid compared with radiative transitions. However, 2o
the same general equations and procedures apply in either case. The assumption above {
is not a bad one in many practical situations. The fast radiative tranmsition for . !
atoms and molecules is the resonance transition between the ground state and the. !
lowest excited state connected by optical dipole radiation, often the order of ;
10% transitions/sec. In this case, the radiative transitions may be much faster than . i ¢
the collision frequencies, which are typically the order of 10%/sec, but the optical
depth for absorption of the emitted photon is so. short that except for a thin surface
layer of the gas sample, where the radiation may escape, the resonance radiation is
trapped and is in equilibrium with the Boltzmann population of excited states. Thus,
the collisions invalving these lowest states occur with the Boltzmann distribution
frequency just as though collisions.alone were. responsible for maintaining the popu~ -
lation distribution... The remaining strong radiative tranmsitions in the gas .generally-
occur between closer lying states. The cpontaneous transition rate and the .absorption
coefficient both vary as the cube of the frequency (that is, inversely with the cube
of the wavelength). Thus, the optical depth for the nonresonant transitions may be
rather large and except for large gas samples, the photons may readily escape with the
result that the radiation field at longer wavelengths can be.far out of equilibrium
with the Boltzmann population of excited states. However in this case, the radiative
transition rates are so much snaller_(several orders of magnitude or more) that at
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usual densities the collision induced transitions dominate the population distribu-
tion., Only for very rarefied gas flow 1s it necessary to include radiative transi-
tions in the master equations for chemical reaction.

. ORIGINAL PAGE IS | .1
5.3 DISSOCL.TING DIATOMIC GAS OF POOR QUALITY 7

To 1llustrate the use of the master equations of chemical reaction, we will con- : f
sider first the case where the reacting gas is a trace specieées, Nz, dissociating in a.. :
matrix of inert gas A, so that essentially all collisions are with an inert partner. . i
This.will simplify the analysis considerably, yet will serve to introduce _the essen-
tial ideas of the method.

Two types of reaction occur; one an excitation of the molecule from state m to
state n, and its reverse;

N2(m) + A< Na(n) + A (5.1)

the other a dissociatiéon from the level m

PR )

No(m) + AN+ N+ A (5.2)

The rates of these reactions may be expressed

dN, (m)

—qr— = I @) = Py N, @) .3) (
dN, (m)

3 = (o NN, (m) = =B N, (m) .4

The quantities Pp, are transition rates per unit time per molecule, which are the
product of the rate coefficient opn, and the number.demsity N, of the inert colli-
sion partner. The number densities of the molecules in state m and n are N,(m) and ,
N,(n), respectively, and the term Pp. represents the rate of ‘escape from level . m |
to the continuum of levels ¢ that exist for the dissociated state. The reason that i
the problem is easier. to solve for an inert gas matrix is because the transition rates E
Pon and Ppe are .then independent of the population numbers N,(m). We thus arrive at ..
linear equations in . N;(m) to solve for the population distributions.. The reader can,
however, appreciate how the nonlinear equations which_apply in the more general_case . j
could be solved by computer iteration, for example.

Define the equilibrium transition rates - i

= eq - €q -
Rmn PmnN2 (m). anN2 (p) an‘ (5.5)

- eq - eqy2 _
Rmc‘ Pchz_@n) - Pcm(q v) R

(5.6)

cm

where . qu(m) and,qu(n) are the equilibrium number densities of molecular-states m
and n, and N9 {is the equilibrium number density of dissociated atoms.._.In addition, .
define
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the ratio of the actual to
( ' ....Possible transitions
: equated to zero,

the equilibrium number density,

Then the sum over all
ylelds the set of master. equations,

which for steady state are

L .
dx
.o E: - I R =
i Rmn'(xm Xn,)~ -+ .Rnc[( eq) Xp:, 0 . (5.8)

m=1 N

There are [, vibrational-

rotational levels available to the molecules,
tions with n =1 to L. «

and L equa-

ST R ATEER L ST e T L Pl

A trivial solution is apparent, X, =-(N/Neq)2 for all n. However, this solu-~
tion is of no interest, . Normally, the adjacent transitions are the strongest, so. if’

; boundary conditions are fixed for X; and (N/N®9), one can see that the solutions will
5 be approximately

P o IRETR S A - AR

X =~ X, for small n (5.9) x
1 2
, . N

Xn (;EE) for large n (5.10)

as shown on the.sketceh of figure -5.1, which !
gives the form of the solution for Xn as b
a function of n. The boundary condition !

on X, is set by the total number of .. . . .........
molecules in the gas.,

= X 4 E
- n
L M= Y mm = Y x N (5.11) .
3 n... n :
=
2 | .
' The equilibrium distributions are, of | y ’
3 , course, the Boltzmarn distributions 0 ;<-~kT->,(N/N°q)2 i 4.,
) 1 n L f——’v e l
# Ngq(n) g, exp(-En/kT) ; )
N = (5.12) Figure 5.1~ Form of the.solutions to the i
2 e . master equations for.diatomic molecule 4
.. dissoctation (— exact, - - - - equiv-
3 where Q 1s the partition function. Thus alent truncated equilibrium
3 . _ distribution).
Xngn exp(—En/kT) = Q (5.13) i
In general, we shall choose a boundry condition X, =1, golve the remaining I = 1. ? ;
equations for the Xn involved, a~d then multiply all the ra“ios Xns including X, . "
by the factor 1 + 6, where ¢ 1s so chosen that the equality.of Eq. (5.13) is ; i
satisfied, If the temperaturé is not too high, the partition function is approxi-
mately 8,s the ground state degeneracy, and in this case X, =~ 1, 1 3
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The total observed (that is, net) rate of production for a given experimental
R condition 1s

L. ‘ L 2

™ * N )

? . R. =Z Rnc[xn - (—;{-}-)] (5, 14)
E — . N

The back reaction term does not get very

important until (N/N®9) zrows near:
————7 unity, _so. the total net rate is pseudo-
steady. The growth of the distribution.
from some initial distribution to final

8 steady state is sketched in figure. (5.2)..
Curves 1 and 2 represent a diffusion-
like buildup of a pseudosteady popula-

5 tion. This is an incubation period in
which practically no dissociation occurs.
Keck and Carrier (ref. 1) show that in.
this limit the master equations reduce to
4 a diffusion . equation in one dimension,
and the solution can be approximated by
known solutions to this. diffusion equa~
tion. Curves 3, 4, and 5 are typical
4 -distributions during a pseudosteady net
no. L dissociation rate interval; during this
period the back reactions are just about
TFigure 5.2- Growth of excited state dis- balanced by the.increasing number of for- -
tribution from initial condition 1 to ward reactions.. Finally, as the reaction
final equilibrium 6 , and depletion of nears full equilibrium, the numbers .in
excited state distribution.from initial the uppéer levels.rapidly £fill up to the
condition 7 to equilibrium 6. full equilibrium value, where the forwarq.
rates and reverse rates exactly balance,
and no net reaction is observed by the expérimenter. Of course, equilibrium can also
be approached from the other direction in which an excess of dissociated atoms exists
initéally. The dashed curve 7 on figure 5.2 is a typical distribution for the case
(N/N®D) > 1.
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For present purposés we are interested in finding a value L* which is less than
L, where a full équilibrium distribution can be truncated to give the same forward
rate as Eq. (5.14)

L* L 2

SIIES] LS M) I

n=1l n=1

This effective truncation point will bé found .to lie between kT and 2kT below the
dissociation limit for a wide variety of functional c¢ross section forms, and moreover, .
the net rate is found té bé insensitive-to theé total number of levels involved. .This
occurs becausé the rateée équations all have an Arrhenius form

T PN DI ¥ t S PV W £ T W

R = a(r)e En7Em) KT B /KT (5.16)

mn

L e
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- in which the temperature dependence of the pre-exponential factor A(T) is not very
L significant compared with the exponential term. Thus, the master equations take the I
: form

S 2 . |
o 2 B/ (x - x ) + e D/H [(-N—‘:E) - -xn] = 0. (5.17a) f

m

n=1, .. . L

2

ngm -x) + o~ (P-En) /kT[(_I:I_I:_q_) _ xn] =0 (5.17b)
m

- n=1,o-‘_. L,

One can see that the influence of the boundary condition W/N° 2 on the. upper levels k
can only extend the order of KT away from.the dissociation _limit. 4

o Since Eq. (5.8) is a set_of L 1linear equations in L unknowns (the L values L
' of Xp), the solutions may be found by standard matrix methods.. The equations are . % 1
first put in the linear form with constant .coefficients

2: a, X, =853 ? =1tol (5.18a)

n=1l .
where 3

2

N o 3
#n ~ -Eggmfnk -"Rnc(§33> (5.180)  % :

and
= N
r . 84c ° -Ric(Neq) (5.18¢)

Then the solutions are

X = ' (5.19)
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I1f we had not chosen an inert bath for the collision partners, tlie quantities .
Pon ©f Eq. (5.3) would .involve summations such as

1:'mn = 321; c‘tnr’mjkl\?A(j) (5.20)

d
i
1
i

4
j
1

in which different excited .states of the collision partner ~N,(j) take part in the .

process and can be excited or .de-excited to other states k. The coefficients oppik
will then depend on the state of ‘excitation j of the collision partner, generally

increasing with the level of excitation because the cross section increases with silze
of the wave function. They will also depend on the final state Nj(k), because. the '
activation energy becomes smaller when the collision partner can be deactivated in o ,
the collision to a lower state of. excitation k. 1

R i
-

-t

Where the dominant collision partners are the same.species that are involved in .. %
the reaction of interest, the transition probabilities Pp, become dependent on the )
solutions for N,(k) : i

P = :;:_amnijz(k) | (5.21)

and the reader can see that the master equations then become quadratic in the unknowns
N, (k). Such equations are solved by diagonalizing the matrices involved and finding
the eigenvalues. This is a somewhat more laborious task than solving the linear-
equations .above, but is within the range.of modern computers for a reasonable number
of levels, at least.

Normally, the dissociation rate problem is solved using the known number of
vibrational levels as the limit L. For typical diatomic molecules in the ground
state such as Hz, 02, NO, N2, and CO, L is the order of 15, 50, 50, 70, and 80,
respectively. Halogens such as Cl, and Brz have about 20 and 100 levels, respec-
tively. Matrices of these sizes are handled reasonably quickly by modern computers.
Unfortunately, this simple approximation overlooks the effects of all the rotational
states which are also members of the ladder of excited states leading to dissociation,
as was.discussed in the available energy theory of dissociation rates. The order of
100 or_more rotational states would typically need to be included for each vibrational
level, iicreasing the matrices involved to the order. of 5,000 x 5,000, or larger.

Even if such matrices could be handled economically, we do not have reliable expres-:
sions for the rotational transition probabilities at present.. Thus, at best, we can
perform only an approximate calculation of dissociation rates, even though a sophis-
ticated set of master equations is used. The number of levels involved in a typical
impact ionization problem is far more reasonable, so. this reaction will be used to
illustrate the type of results which are obtained from the master equations.

- 5.4 TONIZING ATOMIC GAS
Consider now the chemical equations for excitation of an atom from state m to

1 state n by impact with an inert particle

A +2sA +2 (5.22)
m n
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g j and the ionization of the atom from state .m in a similar collision

levels. These équations can be
the dissociation proceéss in the

situation is considered here so

of this ladder .climbing type of
¢ again represents a continuum
particles, in this .case the.ion
courseé, actually quantized, but
practical situations that it is
continuum,

the collision partners. Z, respectively.

Am+Zts'A++e + 7 (5.23)

. Of course, the.ion A%t may alsé possess a series of excited electronic states, but we
: ( will consider only the ground state of the ion for simplicity.
. be reasonably ignored where they lie, as they often do, at very much higher energy

put into the samé form of master equations used for-
preceding section

dA
1 s - = -
dt (amnNz)Nm Pontm (5.24)
dAm .
dt = NN = R Ny (5.25)
where Np and N; are the number densities of the excited atomic states and of

As before, only the inért collision partner
that the transition probabilities P are constants. .

This will lead to. a linear set of equatioms, _for which the principal characteristics

rate process are easier to visualize. The subscript
of kinetic energy states of the "dissociated" pair of .
and. the electron., These continuum states are, of

the quantized states lie so closely together.in most

a very good approximation to treat them_as a classical

As before, we define the equilibrium transition rates and use detailed balancing

to obtain
; , - eq _ eq _ )
i R = Pl Pntn = Ram (5.26)
| L eq e
%y Rmc Pchm PcmNeNA+ PcmN Rcm (5.27)

The._eléctron density N, has been assumed équal to the icn density Np+ in

Eq. (5.27), so this formulation
plasma.

The generalization of Eq. (5.27) to multiple ionization is left

is valid only for single ionization in a neutral
as an exer-

cise-for the reader. The ratios X, are defined
Nm
X = c—- 5.28
m ™ Teq ( )
m
and then the steady-state master equations become
2
X & N, _
= R, = X)) +R ey B X | =0 (5.29)
n=1

e

At. time zero after somé instantaneous nonequilibrium state is established in the
plasma, the derivatives (dXy/dt) are finite and the master equations are a set of
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diffusion-like equations as described by Keck and Carrier (ref. l). Very quickly a
pseudosteady population of X; is established, however, which is relatively insensi-
tive to. the exact value of (N /Neq). and it is the ionization from this pseudosteady
distribution which is normally observed by the experimenter. The solutions for this.
pseudosteady distribution have the same characteristics shown in figures 5.1 and 5.2,
Xn 1s approximately unity, that 1s the distribution is approximately the equilibrium
one, up to.about kT from the.ionization limit, where the population is depleted by
continual, essentially one-way, escape to the ionized continuum. The rates normally

observed by the éxperimenter. are essentially the rates of escape from those levels Kk

below the ionization limit.

The rates Rpp and Rye will be expressed explicitly for cross sections having
the following form.for the excitation and ionilzation processes, respectively

x* |2

Smn = Smn(} ),_’ x> xgn _— (slggmjww
x* S

S = s 1-—;‘:"-) . X > XK (5.31

where x 1is. the dimensionless collision energy BE, and xi is the .dimensionless
threshold .energy BEij for transition from state i to j. ﬁormally, the limiting
values of the cross sectionms, Smn for the.excitation process and SJ. for the ioni-
zation process are expected to be about equal. The slopes of log S.vs log(E - E¥)
near threshold are expected to be the order of unity. In most of the examples that
follow we assume p = 1, q = 2, and (SQn/S3:) =1, but some calculations will be done
varying these parameters to show that the results are not highly sensitive to their
values.

Where Xy < Xp, the expression for Rpy 1is

= eq
mn 0‘:nnNm Nz
~Xm.
é

o [86° o~ (Xn~%m) _ Agm

[uSmn H (x X )] —a N,

30 o7%n . - ’
« Smn e gme(¥n, xm) (5.3

In the last expression of praoportionality given in Eq.. (5.32),. the common factors,
which are the mean ¢ollision velocity u, the atom density Np, the inert particle
density N,, and the atomic partition function Q, have all been factored out, as
these common factors will not influence the solution to the set of simultaneous
equations.involved. —

Where Xy > Xp, the rates are obtained by detailed balancing with the reverse
process

a N1 = o N (5.3
mn m nm n
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Bnh - (xn-
o —B— e (xn ,‘In) P
mn nm gm

from which we obtain

- 81 -(xn-
= §s° e-(xm‘xn) l-Ip(xm -x) = e_f_xn %m)

.t gy

g
i =38° 2H(x -x

om g pm ") (5.34)

! Thus, in this case, the rate Rmn becomes

gn N gm e 25
. A
Rmn = W‘,l.s.nm,,,gm Hp (‘xm - xn) Q Ng

o _~X%p _
* Snmv,e gan(xm xn)'

In a similar way the rates Ry. become

R =a NN
mc me m 2

N e’xm.
= [GS;c e"(x°-?<mz I-Iq(xo - x)] Agmq N,

« Smc e gqu (xo xm)

(5.36)

where x, 1is the dimensionless ionization energy, BI..

The variation in the size of the cross-section limits may be approximated, as
before, with the variation in the size of the excited state wave functions

o 2
o mn N rm + r,
Since rp =« (I - t-:m)"1 and 1, < -t
o 3
2 =i {pE—t1) s, (5.38a)
m
] 2
s2_ “217(1 I +1)s, (5.38b),
n
A 2
s2_ ’217(1 1+ 1) st (5.38c)
m
71

e ——— e Jien

(5.35) ..

2 D

i e o S e inm?

> b

P s———

Al o - y r"' )

v omdd i e ket

e manlaz

~



WL, P ST e L
. 4 RS

where S, represents a limiting size for -collisions with the ground state, and I 1is
the ionization energy. Equation (5.38c) has allowed for the possibility that this
limit.could be different for the ionization process than for the excitatlon process.

For simplification, the rates are all divided by _e-x° and.so/é, as well as the
other common factors, to .give matrix coefficients —_ -

+ 2 S
st/ x ORIGINAL PAGE IS
o] o]
Rie = ‘é:(‘—ga_--xn *"_1) 8.8, = %) OF POOR QUALITY (5.39)

2

X
= (—O -(x0-%p) -
R.um (xo = + 1) g, © Hp(xnw xm) » ¥ <X

X
= — - (xo‘xm) -
(xo ~ % t“i) fn © : Hp(xm- x) s B <X (5.39Db)

Recall that to a good approximation (see chapter IV)

1 T 1/ (p-2)
B, (x) xp__1,.;._.x < (ph)

1/(p-1
=1, x> nMEY (5.40)
To summarize the calculation procedures:
a) The ratio (Ne/Ngq) is chosen for the conditions of interest, and the L
simultaneous equations of Eq. (5.29) are solved using the matrix elements of
Eq. (5.39) for Rpc and Rypp, and with the boundary condition X; = 1.
b) The values of all X, obtained, including X,, are multiplied by the same

factor, 1 + §, to normalize the result to the given number density of atoms, by
equating the nonequilibrium partition function to the equilibrium partition function

L L
(1+6) Y Xg ¥ - ¥ &, e *n (5.41)
n=1 n=1 .

c¢) The total rate for the nonequilibrium gas is then calculated from

L[ v\
E : e
R = ‘ Xm - ;q—e—a Rmc (5.42)
m=1 e

d) Finally, an equivalent truncation of the equilibrium distribution, L*, which
gives the same rate, is found

N 7] LA

e | -

1 - 'N—ea- 2 Rnc_ R (5.43)
e n=l
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The one remaining factor which has not. yet been dealt with is the choice of the
number 6f levels, L, which should be considered.. The ionization problem is different
from the dissociation problem in this respect; in the latter, a finite number of
vibrational and rotational levels up to the dissociation limit is.found to exist
naturally, but in.the ionization préblem, an infinite number of excited electronic
states exist up to the ionization energy limit.

5.5 PERTURBATION LOWERING OF THE IONIZATION POTENTIAL. .

Normally, just one electron is promoted to highér energy in excited .states, and
these electronic statés become hydrogen-like in the upper levels for all atoms and
molecules as the excited ele¢tron orbits farther away from the singly charged nuclear
cluster whi¢h remains at the center of mass. Thus, a highly excited state with
quantum number =n >> 1 has a degeneracy of 2n? ' and an energy, -El/nz“ below the
ionization limit, where -E, is the ground state .energy of .the hydrogen atom.

Obviously, an infinite number of such states exist, 1 < n < », below the ionization
limit,

Fortunately, for purposes. 0f computation, the perturbations of neighboring gas
molecules, ions, and electrons perturb the highest electronic states such that they
become merged with the continuum. Once the electron reaches this continuum, it
becomes free to wandér around from .particle to particle as' an.independent species in .
the gas, with a Boltzmann distribution of kinetic energies established by the ¢olli- —-
sion encounters with thé other particles. This effect is known as the lowering of
the effective ionization potential.. The magnitude of the effect depends. upon the
strength of the perturbations involved.. The effective ionization potential is.
increasingly lowered as the gas becomes more dense, or as the number of strong per-
turbers like electrons and ions increase in the gas at the.expense of neutral species
which are weaker perturbing influences. The lowered ionization potential cuts off
the number of levels of excited electronic states that need to be considered in thé.
gas to a rather reasonable number, the order of 10 to 100 in most situations of prac-
tical interest, numbers which can be managed with reasonable.efficiency and .speed in
the matrix calculations that are performed by the computer. The reason that .the
perturbations truncate the number of levels that need be considered at these values
is that electronic states increase in energy very rapidly as the quantum number
increases from small numbers; the bulk of the states occur at energies very close to
the ionization limit.

For present purposes we need only know that the electronic levels are truncated
at certain energies by the perturbation effects in order to proceed with sample cal--
culations illustrating typical solutions to the master .equations. However, it may be
interesting to briefly review the several types of pérturbation that need to be con- -
sidered in numerical evaluation of the lowered ionization potential. A more complete
réview of the ionization lowering effect is given by Drawin and Felenbok (ref..2), by
Margenau and Lewis (ref. 3), and by Hansen (réf. 4). Other references to original
work on the. subject may be found in these reviews..

First of all, neutral particles perturb the higher excited states whose orbits
reach out to the positions occupied by the nearest neighboring particles. The average
size of an excited orbit with large quantum number n i
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where a, 1s the Bohr radius and. Z is the c¢harge on the residual nucleus when the
excited electron. is stripped away. For neutral particles Z d1s unity. The maximum
quantum number can be taken approximately equal to the quantum level where I, equals . ;
] the average spacing between neutral particleées in the gas :

- 1/2 H j
max [adN(4m/3)]7 "
1/s ‘ \
N )2
=(.N£) Z NT (5.45)
ESONCLIEN I

where N 1is the gas number density and N, is th. density at standard conditions.
(1 amagat).. One can see that the cutoff level is very weakly dependent on density,
varying inversely as the one-sixth power of density.. At one amagat the.cutoff is
Nnax = 6.. This is a rather high density at the high temperatures where lonization
rates become.appreciable, the order of 10* K, and a more typical density would be
107° amagats, with a cutoff at npay = 62..

J S T TR R E ST >

Although the cutoff found above illustrates some of the general concepts
involved, the static particle perturbations are not usually the ones which limit the
number of éxcited levels. At the usual temperatures and densities of. interest, the i
collisions cause a broadening of energy levels, and where these levels merge together . g
the electron may be considered free, able to enter the Boltzmann continuum through a '
sequence of small energy transfer collisions. Recall that heavy particles transfer
kinetic energy very inefficiently to the light weight electrons; only when collisions.
with other electrons become frequent is a fast relaxation to a Boltzmann population
at the equilibrium electron temperature obsérved, and this temperature may rémain. out
of equilibrium with the heavy particle temperature for relatively long intervals. The
half width of a.collision broadened level is given in energy units by an expression
of the following form (ref. 5)

s, = ho = hNSu . (5.46)

R D A IR

where 6 1s the collision rate, or NSiU, the product of the number density and.cross

.  - section and méan collision velocity. When this broadening equals half theé space
' bétweéen levels, the lines merge
dE 2 2 ,
%___. B _Z e _ s (5.47) .
n 2 3

an i

o 1

4

thus '

i

2% (e?/2a) . :

N TRNEE (5.48) ;
For the hydrogen-like excited states the collision cross sections will he . '
approximately ! 4

& = o P 2 o o2 4 2 ¢ i

S TT(ro + rn) =Ty mZon 4 w,mwmgﬁiégzwwum




and a final expression for the excited state_level at cutoff is . -

N, e*/2a, ORIGINAL PAGE IS .
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This expression.varies more.weakly with density than even Eq. (5.45), inversely as

the one-seventh power of N.. The dependence on temperature is even weaker; np

varies as the one-fourteenth power of temperature. For typical gases and temperatures
of 'interest u/kT is-the order of 1 to 10 atomic mass units per eV, and the value of
Npax 1s the order of 9 at .1 amagat density. In other words, at high densities the
collision broadening effect is not as important as the static perturbation effect dis-
cussed previously. However, because of the weaker dependence on density, the colli--
sion broadening becomes more important .as density decreases until it typically equals
the static perturbation effect at 107° amagats, and becomes dominant at lower
densities.

However, the perturbations produced.by ions and electrons. are so much stronger
than those produced by neutral gas particles, that these charged particles dominate
the ionization lowering effect whenever they are present in appreciable numbers,
which is usual in most experimental situations where ionization rates are observed.
The nearby positive ions may be treated as static.perturbers.with long range coulomb .
attractive potentials -Ze?/r. When the electron is excited to a level which equals
the energy of this.long-range potential well, it is swept away from its bound state _
into the well where it can then slide from one ion field into another, into another,
etc., and becomes essentially a free electron, able to enter-the continuum Boltzmann

distribution of free electrons. The nearby ions cause a lowering of the. ionization
potential

1/3 .
, Aﬂne)
AE = 3e‘Z. 37 (5.51)

where ng, is the number density of positive ions in the gas. In the case of single
lonization in neutral plasmas, this equals the number density of electromns, of course,
When this change in ionization potential is equated to the spacing between levels, .
the maximum bound state quantum number n, is.obtained

1/s
Loz 3
m 64/2 \4m a°
e“o

1/s 1/s
N 1/6 _2/3
0 1 A 3
- (T) (?) T ( ) (5.52)

3
4nN°a°

where f 1s the fraction ionized, and n, equals Nf or NO(N/No)f. Once again
varies weakly with density, inversely, as density to the one-sixth. power. For a
typical case near full ionization, and Z = 1, the cutoffs are N, =3 at 1 amagat,
and 26 at 10~%, which would be more important. than either of the previous two cases
considered. At 1% ionization the static positive ion perturbations are typically.
about equal in importance to the neutral particle perturbations, and become less
important at lesser degrees of ionization.
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Still other. effects océur in plasmas that .can dominate ionization potential
lowering, however. The iéns, either positive or negative, exert long-range coulomb
flelds, Zie /x, which ¢cause Stark broadening of. the energy levels. An expression for
the Stark broadening of a hydrogen-like level is

Zie2 "
AE =-—~ (n - l)aov e

(5.53)

When the distance to the ion, r, is replaced by the average distance to thé closest
ion neighbors, and AE 1s équated to .the spacing between levels at the quantum state
s one obtains the expression

1/522/15 N 2/1s 2/15
nm = ;—T;'?-—-(-N—%> 3 3 (5- 54)
6 i ) 4N a’
0o O

where Z 1s the charge on.the nucleus of the excited particle and Zi is the charge.
on the perturbing ion, and again. £ 1s the fraction of particles singly ionized. At
1% ionization and 1. amagat the cutoff occurs at n; about 6, at 10— amagat the .
cutoff occurs at n, about 4l.

Next we have a Debye shielding effect to consider. The range of .a.nuclear
coulomb field is essentially limited in plasmas of reasonable density by the shielding
of surrounding charged particles. The effective range of a charged particle's poten-
tial is given by the well-known Debye formula

kT

p? =
2 2.
4re <?e + E:-Zini)_

i

(5.55)

where n, is the electron number density and njy is the density of ions with charge
Zy. The maximum radius of a bound state is equated to thé Debye length, where the
nuclear potential is nullified, and therefore, where the electron becomes free.

1/4
nm = 21/2[ > kT 3 ]
87 (e /2a0)néa°(l +'Zi)

L/u
. (E) 2"/ kT e (5.56)
NE 8n(e2/gao)Noa;(1 + Zi}

In Eq. (5.56) it has been assumed that only one ion perturber with charge Zj; exists.
For single ionization of neutral particles, both Z and Z; would be unity..  The
Debye shielding effect. gives the strongest density dependence, so at very low.densi-
ties the values of n; obtained are always much higher than the previous effects
discéussed. However, at high densities and relatively low .temperatures, where the
Debye length becomes small, the Debye shielding effect. on lowering of ionization
potential can become dominant.
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Finally, oné more effect needs to be considered, namely, the electron impact

broadening of .energy levels. - Because electrons are very lightweight and move with
high velocities in plasmas, they can dominate the broadening of energy levels.. A
suitably simple analytic.approximation for electron impact broadening (ref. 6), .

equated to tlie spacing betwéen levéls at quantum level n is

1/2

721r2a§e“ mm, . z%e* -

2a n
o ...

This results in the expression for the cutoff bound state quantum number oo
1/1n 1/7

2/7 h 1/2 8kTe NQ - _
nm = Z - . — ﬁ'f— (5.58)
1441T2a;e2N° N |

This effect is generally slightly more dominant than ion broadening except at high
temperature, kT > 1 eV, in which case .Stark broadening by the pcsitive ions dominates.

In a numerical calculation procedure, one would need to investigate each of the
above limits.separately and choose the lowest value obtained for ny as the cutoff
level for the solution of the set of master equations for that particular plasma
condition. Each time one considers a different plasma condition, the process is
repeated to determine a new cutoff appropriate to that condition. The theoretical
models of ionization poténtial lowering need not be highly accurate because the
results are so weakly dépendént on density and temperature that a rather approximate
model will do for the present purposes. The point to note is that all the theories
predict cutoffs which range from excited level quantum numbers np the order of 5
to 100 at the usual conditions where ionization rates are important. We can, there-
fore, illustrate solutiors to the master equations which are realistic for ionization
problems, choosing values of np within this range. In figures 5.3, 5.4, and 5.5
solutions are shown where.. L, the total
number of levels used, is 6, 18, and 54.

o™X For these values the lonization potential
28 has been lowered 0.277 eV, 0.0377 eV, and
8,2 ] 0.0045. eV, respectively; the lowering may
<35 MAX QUANTUM LEVEL L =6, 7 have been produced by any combination of
25 w02 RELATIVE RATER = 0.3 the effects discussed previously: static
Qu ‘ EFFECTIVE neutral particle perturbation, neutral
;EE 104 a8 22— CUTOFF particle collision broadening, static ion
Lo 6 R=10\\D““dd:)' ' potential perturbation, ion-electric
g@ 1070 L =54 / field Stark broadening, Debye plasma
ES . gl R=15~ shielding, or electron impact broadening.
SE 0T e In any case, the solutions to .the set of
:f§1040! ! 4 | ! ) master equations .are. the same.for a given
¥ .01 1 1 10 100 cutoff level L.
g e (I - ¢;)/kT, EXCITED STATE IONIZATION
<43 THRESHOLD, UNITS OF kT
&g

w
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Figure 5.3- Effect of maximum quantum
level L on relative net rate R;
kKT = 1 eV, fon density (Ng/NEY) = 0.0.
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Figure 5.4- Effect of approach to equilib- Figure 5.5~ Effect of temperaturé on popu-

e e e i T 2

3 rium.on the.relative net rate R; lation distribution; <Ne/N§q),= 0.0,. !
g kT = 0.3 eV, maximum quantum level L = 18, ' ‘ j
3 L = 18, | ;‘
p" :' 1

5.6 CALCULATIONS OF NONEQUILIBRIUM DISTRIBUTIONS FCR IONIZING GAS

Some sample calculations for the case where (S:/S) m]l,p=1, and q = 2 are
shown in figures 5.3, 5.4, and 5.5. Figure 5.3 shows the effect of lowering the
effective ionization potential, for the case where the ionization level, Ne/Ngq, is
zéro, and the témperature kT is.l eV.. The solution for truncation at quantum level
18, corresponding to an effective ionization potential 0,0377 eV below the. full ioni-~
zation potential, is shown as a relative rate of unity. The relative rate is
decréased by a factor of about 3 at higher densities where the perturbations limit the
number of bound states to quantum level 6 and lower-the effective ionization potential .
0.277 eV below the full ionization potential; the relative rate is increased by 1.5
: at lower densities where the cutoff occurs at quantum level 54 and lowers the iloniza- ..
5 tion potential by only 0.0045 eV. Thus, the total rate has changed only by a factor
. of 5, whereas the total number of bound quantum states involved ‘ 1

I P T TR PP T wr wE

B

L
Y. 2n% = L(L + 1)(2L + 1)/3 | (5.59)
n=1

has changed by a factor of 590.. One can see that the character.of the solutions |
requires X, to approach unity near the ground state and drop off rapidly at levels. q
in the region kT below the ionization limit. The effective cutoff for a truncated .
Boltzmann distribution giving the same total rate, according to Eq. (5.43), is shown

at about 1,5 kT below the ionization limit. 1

Figure 5.4 shows thé effect of changing ion density, in other words increasing ‘
the level of the reverse reaction.rate, for conditions where the distribution i1s S
truncated at level 18 and kT 1s 0.3 eV. Increasing the ion density has the effect
of leveling out the values of X, 1n the higher excited states.at (No/N29)Z, but the i
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total forward rate is not affected very much until (No/N&9) grows larger than 0.3.
A Thus, the experimenter. can expect to ohserve a relatively constant rate as. long as
FE the lonization has .not proceeded beyond this point. Again, the effective cutoff for
o a Boltzmann distribution is essentially constant, 1.5 KT,

o Figure 5.5 shows the effect of changing temperature on the population distribu-
tion, in the ¢ase where the distribution is truncated at level .18 and the ilonization
is vanishingly small.. As temperature is increased, the ratios Xy are decreased in
the upper levels, 0Of ¢ourse, the equilibrium number densities are increased in this
, case, 80 the. actual densities in the upper levels are not affected much. Again the.
s effective truncation point for a Boltzmann.distribution is about 1.5 kT below the_..__ '\
T lonization limit_for all cases.

: Finally, figure 5.6 shows. the effect
: of changing some of the parameters in

5 the cross section functions, for the case
: of zero ionization and kT = 1 eV, The .
' distribution functions are not changed

; very much by changes in §7/S, or in ..

§ the exponent q. The total rates are

: essentially the same for all these cases.

v Only when the exponent p on the excita-

e tion cross section is changed are the 3
. distribution and the rate affected ¥
L appreciably. As p 1s increased to 2, 10-8 |- b

the cross section increases less rapidly
near threshold than for p =1 and the
population of all the excited states is
depressed somewhat, with a_corresponding
decrease in net ionization rate. The.

-
(=}
1
-
=]
-
\

RATIO OF EXCITED STATE POPULATION TO
EQUILIBRIUM EXCITED STATE POPULATION, X,

A 1.0 0 ;
EXCITED STATE IONIZATION THRESHOLD, (1 - £ /KT _ ;

escape from the upper levels involves Figure 5.6~ Effect of changing cross
such a small activation energy that the .=  section function on pépulation distri-
shape of the cross section near thresh- butions, X,, and relative rate R,

old doesn't make very much difference,

and thus the results are.less sensitive to the value of ¢, the logarithmic slope.
for the ionization cross section. However, if the ionization cross section limit is
depressed, s§/so = 0,3, the distribution is dammed up in the upper levels. Con--
versely, if the ionization cross-section limit is .enhanced, SO/S = 3,0, the distri-
bution is depleted in the upper-levels. Actually, the results are not highly sensi-
tive to any of these parameters, in view .of the usual uncertainties that exist in ..
both theoretical and experimental values for rate coefficients. ...

et =

Exercise 5.1: In calculations involving upper electronic excited states it sometimes becomes coénvenient toé group
together close lying states that fall within an energy band AE. Derive the éxpression for the sum of degeneracies within
this band

PRS- SRDRP U U TSP JETVRN T * S-S O el
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assuming that the levels are hydrogen=like with g, = 2n? and Ey = -Eﬂlnz'. vhere -Ey 4s the energy of the ground-state
hydrogen atom and a 418 an average quantum number representing all the states within the band AE. Note that in gréuping
levels together in this way AE must be much less than KT, otherwise the ef /ective spacing betwéen thesé cdllected states .
becomés artificially large and the grouped levels then represent a barrier to the flow of systems through these states.

The numerically calcdulated distributions, such as shown in figure 5.3, then flatten off at a larger value of X, for the.
lower quantum state, and then suffer a discontinuity in the slope at the point whéré the colléctéd states are assumed,
leading to artificially low valves of X, for the higher quantum states. § _“
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Exercise 5,2

a) Calculate the effective quantum cutoff of excited states .for hydrogen-like systems dgs’tc statig neutral particle..
perturbations for particle radius a, = 0.53%10"% ém, Z %-1, and particle densities N = 1,107° and 107" amagat.

b) Calculate the effective quantum cutoff of excited states due to neutral particle ¢éllision broadening for the same .
3 conditiona as above and for temperatures of 0.1 dand 1.0 eV,

EV ¢) Calculate the effective quantum cutoff of excited states due to static ion perturbationsd £4r the above densities
2 - and for 1% and 10% ionized fractions, -

d) Caléulate the effective quantum cutoff of excited states due to Debye shielding, again for the alove densities and
for 1% and 10% ionized fractions. What are the charactéristic Debye lengths at these conditions?

e) Calculate the effective quantum cutoff of excited states due to electron impact for the above densities, for 1%
ionization fraction, and for electron temperatures of 0.3, 1.0, and 3.0 eV, .

£) Calculate the effective quantum cutoff of excited.states due to ion stark broadening for the above densitiés and .
for 1% and .10% ionized fractions, assuming singly charged perturbing ions.

What is the lowest quantum cutoff at each of the above densities and temperatures? .What is the total sum of excited-.
states considered at each of these cutoffs?

5.7 CONCLUDING REMARKS

In conclusion, the ionization process starting from some nonequilibrium transient
increase in temperature, such as produced in the shock tube, is visualized as occur- :
ring in three stages. First, a diffusion-like solution to the master equations ;
describes a rapid buildup to a pseudosteady population distribution in the excited. ‘
states, which is Boltzmann-like in the lower levels.and is almost depleted in the
upper levels near the dissociation limit. Observed rates may be very small in this
. initial excitation stage interval.. In the second stage, the rate of ion.production is
v relatively constant, and is determined largely by escape from the levels around - kT : -
: below the dissociation limit and repopulation of these same levels by recombination. ; i
Finally, as the ion level builds to about 30% of the equilibrium value, the rates are ,
slowed in the final exponential approach to equilibrium. ;

2,

population distributions in an ionizing gas can be obtained quite well from the master .,
; equacions because, in this case, the excited-state enerey values, the sizes of the ‘
&~ wave functions for-these excited states, the effective lowering of the ionization. 1
}% potential by perturbations which truncate the number of bound states, and the shape

8 of the cross-section functions, can all be estimated within_reasonable limits. From

8 a practical engineering point of view, the important result is that the net rate. of ,
3 ionization can be estimated by truncating an equilibrium Boltzmann distribution : %
: 1.5 kT below the ionization limit. The results are relatively insensitive to the '
exact form and size of the cross sections used, at least in terms of the uncertainties .
that presently exist in.both theory and experimental results for reactions of this '
type. The most sensitive parameter appears to be the shape of the excitation cross..
section near threshoid...

@ : The form of the solutions for the pseudosteady, second-stage nonequilibrium j
:

PP S

The nonequilibrium populations have been deduced for the case of an ionizing |
atomic gas, but the results should be qualitatively valid.for an ionlzing gas of small
(diatomic) molecules as well, since the excited electronic states at high quantum
levels tend to be hydrogen-like in either case. Where electron collision partners are. |
the important ones in the excitation and ionization. process, the theorist must take ‘
care to differentiate between the electron temperature and the heavy particle

e T . T

80 )




" S D e

:empérature, 1if these¢ differ from one another as they often do in realistic plasma
situations. The electron temperature must be used in the expressidons for collision
velocity and cross-section funcétion; the heavy particle temperatures are to be used
vherever the equilibrium heavy partic¢le number densities are involved.

Exercise 5.3t Tabulate the degeneracies ana the.ionization potentials for the 10 lowest lying levels of neutral argon
given by €, E, Moore (ref. 7). Use the approximation that the cross section 6f each level is inversely prioportional to the
fonization potential from that state and compare the product of degeneracy and cross section for each level with the ground
. state value as an indication of the relative collision frequency for electron detachment. For collisionsd with the ground .
. state.atoms, what are thé factors (8;,/S,,)(81/8,) required in the formula of Eq. (4.11)?
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CHAPTER VI COLLISION INDUCED VIBRATIONAL EXCITATION

'

6.1 SUMMARY

Collision-induced vibrational transition theory is reviewed, first in the classi--

(. cal approximation, and then in the semiclassical approximation where the collision ..
trajectory-is assumed to be classical .and eéstablishes a time-dependent perturbation
which transforms the quantum wave funétious to new steady state elgenfunctions.
Analytic approximations can bé c¢arried through with this model all the way to a
threé-dimensional,tranSition.probability; collision cross section, and reaction rate..
These approximations thus afford valuable insight to the total problem and serve as a.
guideé for more rigorous numerical calculations pérformed with digital computer.
Although this renders the vibrational transition reaction.the only completely devels=-
oped rate problem, so that it servés.as a .good model for .the problem of.rate pro-
cesses in géneral, vibrational transitions are not yet complétely solved. In particu-
lar, coupled rotational transitions are found to occur with thé three~-dimensional .
collision perturbations, and the number of closely coupléd équations required for a .
complete solution is too. large even for modern computers to handle..

6.2 INTRODUCTION

The rates.of vibrational transition.produced by molecular collisions. are impor-
tant in a uumber of practical problems. For example, vibrational excitation influ-
ences the.structure of .shock waves.and produces variations in the equation of state
which are important in.gas dynamic flow. Vibrational excitation causes.absorption
and dispersion of sound. Recently, nonequilibrium vibrational excitation processes
have become important meéans of effecting population inversions in.upper vibrational
states .for the purpose of producing high power gasdynamic lasers. The.principal
reason we are interested in the problem here is. because it is the only reaction which
has, to date, béen analyzed by analytic approximation through the entire sequénce
giving transition probability, three-dimensional collision cross section, and rate
coefficient as outlined in chaptér II. Thus, it sérves as a good illustration of the
_ kind of analysis we. wish it were possible to perform for reaction rates in general.
- However, as we shall see, some. of the approximations involved leave moré .work to be
. » done, even. for the vibrational excitation process, before we can say that. this problem
ﬁ " has been adéquately treated.

R e R

So many. studies of vibrational excitation have-been published that it is practi-.
cal to recall only a few of the principal landmark papers hére. A clas..c-paper by
Landau and Téller (ref. 1) in 1936 analyzes.thé one-dimensional.collision excitation .
of harmonic oscillators in connection with dispersion of sound. Landau and Teller
deduce. the result that the vibrational relaxation rate varies as éxp- (e/T)lla, where.
0 1s.a characteristic témperature; this reésult is derived using purely classical
arguments about the form of the impulse.produced in collision. Almost every sét of
vibrational.relaxation data ever obtained has béén comparéd with this result, gener-
ally with reasonably good agreement (refs. 2-5). The Laundau-Teller.model was
refined by Bethe and Teller (ref. 6) in 1945, but little else was accomplished until .
1952 .when.Schwartz, Slawsky, and Herzfeld (ref. 7) published.a quantum treatment of
energy exchangé in one~dimensional collisions with harmonic os¢illators. This work
was .based on methods deriveéed by Zenér (ref. 8) and by Jackson and Mott (ref. 9), and
has been widely acceptéd as the most rigorous analysis of the problem which seems
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practical. Schwartz and Herzfeld.(ref. 10) followed with a three-dimensional treat~-
ment using the method of partial waves.(ref. 11). They were unable to deduce the.

¢ross sections, but did conclude that thermally averaged transition probabilities in
three-dimensions have the same form given by the one-dimensional models. Essentially, .
the same results for both one- and three=dimensional c¢ollisions were published inde- :
pendently by Takayanagi (ref.._12).

N AN e IR pimn st

Most of the work subsequent. to the above has.employed the semiclassical approach. .
In.this metho¢ the classical trajeciory for motion between the collision partners is
used -to.obtain a time-dependent perturbation potential; then transitions produced by
this perturbation are calculated by quantum principles. The deBroglie wavelengths ¢f
heavy gas particles are normally much smaller .than the scale distance for potential
changes involved, so the classical trajectory is a good approximation, as accurate as
needed for many practical purposes. In fact, Rapp (ref. 13) shows that a complete
classical treatment of one-dimensional collision excitation of harmonic oscillators
from the ground state to the first excited level leads to the same result as the
quantum treatment by Herzfeld (ref. 14). The semiclassical method was used by Rapp_ .
and Sharp (refs.. 15, 16) to investigate vibration excitation produced in.very high
energy collisions, and by Rapp and Golden. (ref. 17) to analyze resonant vibration
exchange. Kerner (ref. 18) developed relations between quantum .and classical transi~
tion probabilities of harwonic sscillators subject to large perturbations where multi~ L
ple quantum jumps occur, and Treanor (ref. 19) showed that Kerner's results are. :
consistent with the numerical results obtained by Sharp and Rapp (ref. 16). An
excellent survey of the results to 1968 is given .by Rapp and Kassal (ref. 20).

i SSNEDE - SR ER
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6.3 CLASSICAL HARMONIC OSCILLATOR EXCITATION

A harmonic oscillator subject to some arbitrary impulse function of time, f(t),

such as caused by collision, obeys the inhomogeneous differential equation : 'i
. § +wly = 20 (6.1) )

where y 1s the displacement of the oscillator from the equilibrium position, w is
the oscillator's resonant frequency in the absence of the perturbing impulse, and u
is the reduced mass. There are two linearly independent solutions to the homogeéneous
part, and the general solution when f(t) =0 is a linear combination of these

y(t) ='Ayl(t) + ByZ(t) (6.2)
where the constants A a1 B are chosen such that the value of y(a) and its time

derivative y(a) are specified at some reference time ¢t = a. If y, and v, are
chosen such that

e e nd B s

y,(a) =1 v.(a) =0
, (6.3),
yZ(a) =0 yZ(a) = 1
then
y(t) = y(a)y, (£) + y(a)y,(t) (6.4) |
CRIGINAL PAGE [3 ‘
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The normalized equalities specified in Eq. (6.3) can, of course, be fitted to other
numerical values by merely stretching the y and t coordinates appropriately.

- Now let £(t) be finite in the interval £ - § < t < £ + 8. Integrate Eq. (6.1)
- with respect to time to obtain

E+S E+6
F(E +8) = y(E - 8) + wz‘J. y(t)dt = J. HE) 4 (6.5) !
g-6. E=8
Let f(t) increase as & - 0 in such a way that the integral on the right remains A
unity 1
E+§
J. f()de (6.6) ;
u .
£-¢

If y(t) is finite and continuous at t.=-§, then.

Y(E + 8) = (= §) + 1 (6.7) é
This means that y is discontinuous at t = £ and that the increment.is unity.. 1 ’
Now a general solution to the inhomogeneous equation, Eq. (6.1), is the general ? .

solution to the homogeneous part y,(t), which satisfies the boundary conditions, plus
the Green's function G(t,£&)

y(£) =y (t) . t<£
(6.8)

= y,(t) +G(t,8) , §<t.

where Green's function is that solution to the homogeneous equation which vanishes at
t = £ and whose derivative there is unity

G(E,g) =0
(6.9)

- G(E,E) = L.

f' { To construct a solution of Eq. (6.1) for any arbitrary function £(t), superpose
L all the impulse solutions

t
y() =y, (e) +«J' o(e,e) B ge (6.10)
a

O . s
ek

Exeréise 6.1: Verify that Eq. (6.10) is a solution to the inhomogeneous equation, Eq. (6.1).
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By inspection, one can see_that Green's function is. OF POOR QUALITY
1w(t-£) "
: : - e o 8in w(t-£)
. G(t,E) = Re m m (6.11)

TR T e R A

Thus, .the general solution of the impulse excited harmonic oscillator is

-
|

i o e . .

been completed.

. 1 NS P

. y(e) =y (£) + = J' sin w(t - £) =P~ dE

,‘: a 3
- t t {
- sin wt £(8) _ cos ut £(8) 4
F yo(t) + " I m cos wg d§ m J' y sin wg dg !
{ a a i
3 P e oD
3 = yo(t) + Re J. y To dg (6.12) 1
E a :
f Generally, we are interested in the state of excitation after the collision event has

= -iwg !
3 y(=) = yy(=) + Re olut -" £ (§)£Z__u de (613)1
Consider now a diatomic molecule subject to the linearized perturbation potential ,!
(U '

UGe,y) = U+ (F) v+ . (6.14)

where U and (3U/3y), are the.potential and its gradient at the equilibrium value, ..
y = 0, both functions of time. The force on the oscillator is just

: Al ;
; |

LGy (3
£(t) T (3>')e R (6.15)

Starting from rest at time t = -», the amplitude y at time t is

¢ (3u/3y) ‘ 1
y = J- T sin w(t - £)d§ (6.16) ‘

and the maximum amplitude Y, excited by the collision at time t, may be expressed .
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t
(3u/3y)
Y = j' ——-—‘iei_“‘? de (6.17)

-0

The net amount of vibrational energy excited is, in units of hw, just the square of
the Fourier transform of f(t) or (3U/3y)e divided by 2uhw.

t 2
AE _ pw?y? 1 (_Eﬂ) fut
ho 2hw 2uhw J' y e e‘ de

-0

(6.18)

As we shall see later, this quantity is exactly the same as the transition probabil-
ity Ps1, for transition from the ground state to the first excited state given by
small perturbation quantum theory. However, the strictly classical model is not so

simply related to transition probability when transitions from excited quantum states
are involved,

Interaction potentials are typically taken to be exponential in character during
collision

U(y,t) = Uovexp(Z-%fE) (6.19)

where r 1is the distance between centers of mass of the .collision partners, a func- -

tion of t, U, establishes the magnitude of the interaction potential, and L 1is a
potential scale parameter. In this case

U,
U UG.e) o) Y - -

If the collisions are not too energetic, that is, if gas temperatures are not too.
high, the vibrational amplitudes y induced by collision are small compared with the
potential scale parameter L, which is typically the order of 0.2 &, and the exponen-
tial potential may in this case be linearized and the expression for (3U/3y)e from
Eq. (6.20) substituted in Eq. (6.18).

Exercise 6.2: Use w™! for the units of ¢t .a\'u*l.(h/ut.;)l/2 for the units of y, and show that the éscillator differ-

éntfal equation redudes to the dimensionless form .

1/2
f+yea(t)= ("h—“) fu:z)

Show that the solution for y(t) for the forcing function

ORIGINAL PAGE {5
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a(t) =0 , t<o0
=-a t>0
1s, for.the éasey,(t) = 0,
y = 0. s t <0
= -ag(l - cost) , 0 <t.

The negativé impulsé force represents a force which compresses the oscillatér to a new equilibrium position =ay. The
oscillatur is seen to oscillate with the amplitudé . a, about this new equilibrium point as long as the impulse exists.
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Show that if the c¢onstant foréing function is terminated at t.= 2n7 OF POOR
R QUALITY
yer =0, 200 S
whereas, if the forcing funétion 1s terminated at ¢ a (20 + o
y(t) = 2a, cod t (2n + )7 <t

which has the amplitude 2a,, and is in phase with the foréed oscillations, Finally, show that 1if the impulse la-ts for

thé interval. (2a + 1)W/2
y(t) % a,(eco8 t 2atnt) , . (n+ /2% ¢
where the t sign obtains if n -1is even and odd, respectively. This oscillation has an amplitude /5h° and is shifted

in phase by u/4 or 3w/4 for n even anc odd, respectively, Thus, we see that impulse functions of varying length can
produce quite different amplitudes and phases for the oscillations inducéed.

Exercise 6.3: Find solutions for y(=) and y(t) for the impulse function

a(t) =-—a efbltl‘

What is the character of the solution up to t = 0?7 How.does this differ from the solution for t > 0?° J—

Exercise 6.4: Show that if the impulse is very short compared with the oscillator's period, w=!, the solutions for
y(=) depend only on the total impulse, I,

- L
y yo(t) + e sin wt

where
«
I = f £(t)dt

Note that this solution is independent of the shape of the impulse functior, f(t).

6.4 QUANTUM OSCILLATOR EXCITATION

The time-dependent Schroedinger equation expresses the manner in which the com-
plete wave function ¢ of a system of particles changes with time =

fiy = 1h %{ (6.21)

Where H is the Hamiltonian operator for the system. In the perturbation method of™

sglving this equation, the Hamiltonian is written as the sum of a steady state part
H° and a time-dependent perturbation H'

H=1 +H (6.22)
The unperturbed wave functions y©  satisfy the equation
A o
40 = 1n S - (6.23)

and since ﬁo is independent of time, the wave functions which are eigenfunctions.
of this equation have the form

W(a,t) =4 (e Tt/ (6.24)
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This set of eigenfunctions forms a complete orthogonal set; thus, any arbitrary func-
tion, for example the solution to Eq. (6.21) which we seek, can be expanded into a
sum of these functions .

V@@t = 3 a (6)¥(a,t) o (6.25)
n RiQINA, PAGE |
Substituting Eq. (6.25) into Eq. (6.21), we obtain . Q—_ALITY
« — A dyd
; 'anu°¢t‘; +.; a_fi'y? - ih ; & y8 +-1h ; . S (6.26) o

The first term on the left side equals the last term on the right, in accordance with
Eq. (6.23), so

) IRETEPS SR .27
1 n.

If the number of energy levels is finite, as is the case for diatomic molecule oscil-

lators, this.leaves a fiaite set of coupled equations to. solve for the unknown

coefficients ap. Explicit expressions for the time derivatives én may be obtained ‘
by using the orthogonality properties of the eigenfunctions wg; multiply both sides |
of Eq. (6.27) by ¢&* and integrate over all coordinate.space to obtain '

TERE PIFNCY REL S

(6.28)
i - t
Y E 8‘n(t)e Hemn Hmn(t)
n
i where the circular frequencies W, are
;! E -E
‘: Yn =T R o (6.29) .
ard the matrix elements Hp,(t) are
- * '
Ban(® = [ G2 @R @00 (@) (6.30)
At time zero, the system is specified to be in one particular eigenstate .so that

an(-«) = 1 and ap(-») = 0 for-all n ¥ m. The set of.coupled Eqs. (6.28) does not
involve any approximation, and in a general case, it can be integrated. numerically
with modern computers, if the total number of levels is not too large. This is known
as the close~coupling method of solution., The solutions can be performed for anhar-
monic oscillators as well as for harmonic oscillators if the eigenfunctions, ¢3! for...
the unperturbed state of these oscillators are. known.. In this .case, the matrix ele-
ments Hy, may need to be determined by numerical integration, but where the.pertur-
bation Hamiltonian H'(t) has a known form separable in q and t, this can be done
independently and the results tabulated in computer memory before the numerical inte- .
grations of the coupled set of equations is performed. Also, the perturbations can
be of any arbitrary size in this method; they are not limited to small energy
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compared with the steady state,_unperturbed energy levels of the oscillator as in the
small perturbation method which follows.

RN S B L ¥ e ettt

The small perturbation .method is limited to cases where H'~ is much smaller than.
H?, but this is a condition which is satisfied -in many practical cases of excitation
of molecular oscillators in gases, as long as .the temperature.is not too high., In
this case the solutions.can be carried out in analytic form, which gives us a great
advantage in understanding the process and in efficiently programming the more exact
numerical soélutions of the coupled set of equations. In the small perturbation
method we let the system be in state m. initially, aj(-x) = 1 and an#m(’”) = 0,
and neglect all terms on the right side of Eq. (6.28) except the term n =m, For a
short impulse then the equations become

Ehant i S et A P O N e R
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i) = = § B (6) ORIGINAL PAGE'IS.  (6.31)
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8 (0) = - f Hy (£)eOmE G
for which solutions are é
t
o (t) ~1-3% f H_(£)de (6.33) |
. L
2, ® <~} [ @t o 6.3 ]

Exercise 6.5: Show that {f H' 4is a constant in time, the perturbed wave function is a steady-state wave function
° . - (1/h) (Ep+hgm)t
a (e)g = o (@)e”

and the time dependent factor contains the first-ordér energy eigenvalue, E‘% + Hnms @8 required by the time independent
L perturbation theory. Also show that the coefficient for a short.constant impulse of duration At is

H .
a_ =20 [l - e-(ilh)(sﬂ-ﬁ'ﬂ)m] = % Hondt ‘

n En-Em

and the probability that the system will be found in state n after such an impulsive collision is
2 2

.2 Rmﬂ(At)
a‘ o ————
n. n?

Exercise 6.6: . Show :hat if Hy, varies slowly in a time interval 2n/wpn the matrix element and the transition )
probability nearly vanish. This type of collision is thus adiabati¢, If on the other hand Hy, varies rapidly and A
remains constant at time t > ty, as a step function, the integral diverges. This can be handled by integration by parts

¢ Lugnt |* *
i lupnt Hon © dHpy glumnt
b T Hon © de = - hw + dt  he de
(SR mn - Yoo mn

T A T e Ko ¢ -

The-first term vanishes at.the lower limit because Hpn(-®) % 0. At the upper limit it is just the steady-state perturba-
tion solution to level m; the time dependent part of the transition probability is the square of the second term. Show
that 1f the dérivative.ls.large, that is, the step funétion perturbation 1s applied very quickly on the time &cale 21|/mmn.
H
. Hon

mn

2 2
hwmn
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The probability that transition to. another state n has occurred.at any time ¢t
is a}, or afa, 1if a, should be complex, S

mnn

- | U1t g || ORIGINAL PAGE i8
l' | P --azn—?“ B e“™" de/ OF POOR QUALITY (6.35)

The:probability of transition induced by the entire collision. event is gilveiu when the
upper limit of the integral is +=; that is, the probability is the square of the
Fourier transform of the matrix element Hpg,.

Consider now a harmonic oscillator subject to the linearized perturbation of
Eq.. (6.14)

U' = (—g—g—) y tee o (6036)
e.

where y 1is the dimensionless oscillator displacement of Ex. 6.2
1/2

y=(8) -0 (6.37)

and p and po are the dimensioned values of. the oscillator coordinate. In this case .
the wave functions are the well known solutions to.Schroedinger's equation with the
potential V = ww?(p - pe)Z/Z.

2
y=n eV /2
0,(5) =N e H () (6.38)

where H,(y) is the nth order Hermite polynomial and N, 1is the normalization

“~ constant required
1/u 1 1/2
—_ (6.39)
) (2nn!)

such that the integral of. ¢§ over all displacement p 4is unity. The transition
y matrix elements Hp, n4; are in this case

gk
2
o}
flt\
e

00

' U
Hont ™ I cl’n('ﬁ)ey‘i’nﬂ de .

(o]

€x

1/2 o2
- (L) (U -y
uw) (ay)eNnNnﬂ .[ e’ Hyh g, d
o0

-(&)@)

(3—’-2'—1)1/2 | (6.40)..
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The circular frequency for this transition in the harmeni¢ oscillator is just the
fundamental frequency uw, of course

(n + Dho = nhis = ORIGINAL p '
0 . .- -PAGE 13 (6.41)
ot Y— OF POOR QUALITY

(. and the transition probability thus becomes
t 2
= L (RV lut S 42
Pn,n+1 n+ 1) 2vhw ;[ 3p)e ¢ - dtl (6.42)

All other transitions except a.change in vibrational quantum number by %1 vanish for
the linearized perturbation of Eq. (6.36). Of cource, in real collisions -higher order .
terms in the interaction potential are present and multiple quantum Jumps will occur
with finite probability, even though with much smaller probability than the jumps to

adjacent levels given above.. For transition from the ground state to the first . " 3
excited state, the collision-induced transition probability for the'linearized !
potential is e e e g
) 2 . §
1 3l iwt
P, =T J.(—a;‘;)e MUt g¢ (6.43)
o

which is exactly the same expression obtained for AE/hw with the classical harmonic

!
= ’ !
|
!
:
i
+

i
Exercise 6.7: Use the recursion relation between Hermite polynomials

L1
Yy =7 By Y OH

S A T P P v

vr:,'::v..//:.;-\\'-r«

and the orthogonality relation

1/2 o 2
L 2 -y -
uw) Ny J: - € Hnﬂm 4y = S

to derive the result of Eq. (6.40). Also show that Hym vanishes for the.linearized perturbation,. excépt for m=n ¢ 1,

e, e, e -

R S

6.5 SEMICLASSICAL APPROXIMATION, COLLINEAR COLLISIONS

In a strictly quantum solution, the incoming particle colliding with the oscil-
lator is treated as a wave function with wavelength (E - U)/hc, where E is the total. .
energy and U is.the interaction potential. The perturbation method outlined in the
last section then proceeds using the.total wave function for the entire collision.
system rather than just the oscillator-wave function aloné. Although such wave func- * :
) tions can be obtained numerically, once the interaction potential is specified, the 2 ;
i semiclassical.approximation is a somewhat simpler.procedure, which for an exponential
; interaction potential leads:to analytic solutions which conveniently express the
important parameters of the process. In the semiclassical method the classical tra=- -
jectory for motion between the colliding particles is used to obtain a time~dependent . |
¢ potential perturbation; then the transitions produced by this perturbation are calcu-
lated by the quantum methods used in the previous section. The deBroglie wavelengths

e
€ .

3
!
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of heavy gas particles are nermally much smaller than the scale dimensions of the
potentials involved, that is, the distance over which the potential changes by an
appreciable amcunut, so the classical trajectory i1s a good appres.imation and the semi-
¢lassical results are, in principle, as accurate as nceeded for many purposes.,

For the present, we will restrict the collision to a one-~dimensional, collinear
event, which is a ¢nllision that 1is so atypical as to occur with zero probability but
nevertheless illusi.  v#s all the principles involved. Later we will consider .the
full three-dimensionui case. The collinear ¢ollision is diagrammed in figure 6.1,

R—

|
N f ™

CMassor ORIGINAL PAGE IS
DIATOMIC OF POOR QUALITY
MOLECULE e mee e v

Fig. 6.1--Collinear collision between diatomic oscillator and inert collision partner.

The diatomi¢ oscillator consists.of atoms of mass m; and my, x is the interatomic
distance of 'the oscillator, and r is the distance from the center of mass to .the
center of an inert collision partner which approaches the oscillator along the molecu-

lar axis and strikes the atom with mass m;. The interaction potential is commonly
expressed as the sum of two exponential, repulsive. terms

mzxv ’ mlx.
U =.A exp -(r tm)/l.] + exp{~{r +m—:+—mz/[- (6,44)

Expand this about the equilibrium oscillator separation, xg

ux X -~ X X X - X
U=A exp(—-{-)exp(ﬁ)exp[t-;-l—-( T e)]{l + exp (— f)exp[— ___f__g:” (6.45)
1 1 , :

where u 1s the reduced mass .of the oscillator, mlmzl(m1 +m,).
Uo represent the value at r = ¢ and x = Xe

Let the constant

X S
Uy = A.exp(- -%)exp(aul— -L—e)[l + exp_(— -12)] (6.46)

Then to terms of first order in x.- Xes the interaction potential becomes

_ ' X - X
U= U, exp(-:__; i)[l + 1—%( T e) + .. ] (6.47)

To first order,. ¢ represents the distance of closest approach in the classical tra-
jectory and Uo 1s the-potential at that point, which for the collinear collision is
the total kinetic energy of the collision pair. In a three-dimensional ¢ollision
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; there would, of course, be some residual kinetic energy at the point of closest
f approach, but in the present case the kinetic energy is completely absorbed in the
interaction potential at this point.

L To obtain the classical trajectory, the.potential is averaged over all values. of .
o x and the trajectory is assumed to be that which obtains for this average potential.
- Because- of -the .orthogonality relaiions of the normalized harmonic oscillator wave .

i functions, the first term in Eq. (6.47) is multiplied by unity, the second. term
vanishes, and the average potential is simply

1 r~-d
U= <¢:|U|¢Q> -'UO-exP<T, T ) | (6.48)
The value of the collision velocity r as.a function of time is given by

where the mass m is the reduced mass of the collision pair | 5
E

T AT e

R Sy

ey T

i

mA(m1+m2)

m =

mA + my + .my ('6'50) :
' 1

: Let time zero occur at the point of closest approach and integrate Eq. (6.49) to

obtain
T
l- m u 1/2 t

s [1 - exp =-(r = o/L)]

/2
=. 2L tanh™* [1 - exp(— L T o)]
Thus the exponential term in Eq. (6.48) becomes

X -9\ - 2 ut 2 ut :
e"P( L ) 1 - tanh” 57 = sech. op DT 1S E— ;

and the interaction potential of Eq. (6.47) can be expressed as the time dependent
function

2 ut 1l X - ‘xe‘\
U= UO sech 'i'f l + El-;( L ) + s s e " (,6052)

The transition matrix .elements Hpn of Eq. (6.30) vanish for the first. term of
Eq. (6.52) because of the orthogonality relation between the oscillator wave func-
tions, and only the secéond term in (x - Xg) contributes a finite result.

The transition probability of Eq. (6.35) may be expressed

2
2 E 2 .
Pn,ntl - Yn,nil (ﬁ F: (6.33)
| (...?,1&;5‘!%\1;1.'.‘ PAGE (8
o OF POOR QUALITY
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where Yn,nz; 18 the matrix element average ORIGINAL . PAGE ‘IS

—_— OF PGOR QUALITY
Y - A% FE— ——;—.—9. ¢
n,ntl ntl|m, L n

_'(n £1/2 ¢ 1/2)‘/2
4m, u)L2 ..

(6.34)

and. F is the dimensionless Fourier transform of the time~dependent part of the
perturbation

wv
F=ou f sech? (asu:)ej‘mt dt
- 00

- “(g)z csch(%g) (6.55)

where a =-u/2L. The first term of the potential of Eq. (6.52) contributes nothing
to the transition probability because all the matrix elements for this term vanish _
due to the orthogonality of the oscillator wave functions, whether harmonic or not..
The matrix elements Yn,nt, are the only finite elements for harmonic oscillators
with a perturbation term proportional to (x - Xa); all other elements vanish unless
higher. order téerms in the expansion .of the potential are retained or anharmonic
oscillator wave functions are used.

Except at very high temperature the ratio ww/2a 1is normally much larger than
unity, and to a good approximation

“ .
Fl? ~ Anz(g) e Tu/a (6.56)
Then the total transition probability is
2, (4
ofn +1/2 + 1/2\f E W ~Tw/a
Pn nt1 ™ 4 ( > il \3) ¢ (6.57)
* 4m;wl”/h

If a characteristic ¢énergy E. 1is defined
E, = 4n’mw’L? (6.58a)

and a dimensionless characteristic energy X. 1s defined

E 32,2
c _ 2r°mw’L
Xe ™ i T (6.58b)

where m. is the reduced mass of the collision pair, the transition probability
becomes the simple expression

P e "(P'*‘%'* %)(5%)<§§>g‘(“°’x’1/2 (6.59)

where x 1s the dimensionless collision energy mu?/2kT.
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Note that if the gas is a pure-gas of homonuclear diatomic molecules m;=my=m. .

If the oscillator is heteronuélear, the transition probabilities are greatest when
the collision occurs with the light atom end of the oscillator. With HCl, for
example, the transition probabilities are. about 35 times greater when the H atom of
the molecule 1s struck than when the heavy Cl atom is impacted by the ¢ollision
partner.

Exarcise 6,8i.Bvaluate the Fourler transform ORIGINAL PAGE 's
. é OF POOR QUALITY
Fauw J. tu:ch“‘-(nt)ci“'t dt # ﬂ(—i‘;‘-) csch(—.’;‘_—‘ﬁ-)«

(TR

Note that poles exist for the intégrand at #(in/2), £(3in/2, £(5in/2), ctc, Choosc a.path of integration around the
singularity 14/2 and integrate in the complex pline along the real axis x ind back along the axis x + L. Show that
the integral vanlshes at the limits,. then equate the integral to the reaidue at the pole enclosed,

At. this point the one-dimensional theory is.made three-dimensional by taking the
transition cross section equal to the product S,P, where S, is.a constant suitably

chosen to fit the magnitude of vibrational relaxation rate data. The rate coefficient

is the cross section averaged over a Boltzmann distribution of collision energies
ﬁSO - -
@ = P(x)e = x dx 6.60)
- %
where P 1is expressed in.terms.of the dimensionless collision energy x or E/KT.

The rate coefficient o thus becomes

s BN (7 st
o 1 1\/ m d -(xe/x) =% <
e " (BT E i)(?nj)(?w) J' xe . (6.61a)
o

The integrand of Ec. (6.6la) has a sharp peak near the minimum of the exponent
X + (xc/x)l/z. which océurs where its derivative vanishes.

1/2 1/3 1/3 1/8 2/3
1 - —}i-o;-—— = o . [ ) -,-(—c— = .aE_c_ . E = Ec__(_.ki)——— (6 62)
e i % T\ 8KT i 5 2 '
m

The exponent is.now .expanded about the point xn
1 1/2
(xc)/z v <xc) | Bx:/‘zz 2
X +|— =x +|— e (X -x )+ ..
X n *n ."M.éx; 2 n

- 3 _ 2
3xm + zxm (x "'xm) + ..

while the pre-exponential terms in the.integral are pulled outside the integral and
evaluated at xg.
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- v 1 1\ m\f ¢ =3xn ~(3/2xp) (x=x%_) ) ;
« 8 (n ty ot 'f)(ﬁ)(hu) n ©- J' €. m m? gx (6.61b) J

0

Since xp 48 normally very large compared to unity, the integral c¢an be performed
over the -entire. range from =% to o without introducing appreciable error, which

yields (21x,/3)'/? for the definite integral and a final result for the rate
¢oefficient.

1/2

as 2
x2/2 g3m (6.61c) -

E
o (o + L o DY(m)(Ce)(2r
* = s (? T 2)(m1)(ﬁw)(3 )

This 1s the final result for the rate coefficient for harmonic. oscillator -excita~-
tion in the usual one-~dimensional collision. approximation. The dominant factor in.

the . above relation is the-exponeytial.term\ exp(~3xy), and so the logarithm of o is
seen to vary primarily as (kT)" /3

E 1/3 .
ORUCIMAL pagk jg &0 o ~ -3x = '3(5*%) i -(%) e
G- BPOLR JSALITY |
where
Eq
8 = 57 < (6.63b)

This is the famous result originally obtained.by Landau and Teller (ref. 1). However,
for our purposes here we shall want to include. corrections for:. (a) conservation of
enérgy in the collision process, (b) attractive.long-range potential interaction, and

(c). the 3-dimensional.collision effects, all of which are missing in the above. j
derivation. e o e e

6.6 ENERGY CONSERVATION IN VIBRATIONAL TRANSITION

PN
bk

It is easy to seé that an allowance must be made to account .for consérvation of
energy, otherwise the rate coéfficients %n,n+; and Gp4y .n will be the same, in
violation of the principle of detailed balancing at equilibrium. Rapp (ref. 13) lets
the effective collision velocity u be the average of initial and final velocities,
(ug + ug)/2, and Herzfeld (ref. 14) points out that this substitution is necessary to
reconcile the classical and quantum results. To terms of second order, this is the.

same as letting the effective collision energy be the average of initial and final
enévgies

T al it o erlip -

=x, %"-T—_ (6.63c)

X
The % sign 1s used .depending upon whether the transition is to the adjacent lower
or upper vibrational state, respectively. The cross sec¢tion is assumed to be a func-

tion of the eénergy at thé turning point, and thus it will be convenient to change the
variablé of integration to x rather than X4+ in which case
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ai = -3 exp(;, -g—\k.ﬂ'f)f S(x) (x t -é%)e-x dx (6.61d)

hw/2kT

The factor exp(+hw/2kT) is just that required so the ratio of the forward rate to the.

—Treverse rate is the Arrhenius factor - exp(-hw/kT) which preserves detailed balancing
at equilibrium. The lower -limit of the integral, Eq. (6.61d), is the same for either
excitation or de-exc¢itation, since. the excitation cross section vanishes for collision
energy less than .huw.

6.7 EFFECT.OF LONG-RANGE INTERACTION POTENTIALS ON VIBRATIONAL TRANSITION

Still one more correction can be added very simply for the usual case where a
long range attractive potential exists as well as the short-range, steep, repulsive
potential. A typical form of the potential
is shown in figure 6.2, where the short-
range potential decreases exponentially with
the intermolecular -distance r; while the
long range potential increases inversely as
the nth power of r, leading to a poten-
tial minimum e below the free particle
potential at infinite separation. The
Fourier transform of the collision perturba-
tion, Eq. (6.35), is still almost totally
determined by the exponential character of.
the perturbation near the turning point;
only the initial and final velocities which
the system senses at the turning point are
all increased by an additional kinetic
energy amount e¢. Thus, the effective col-
lision energy is now related to the initial
interaction energy, which appears in the
Boltzmann distribution, by

U~aett

INTERMOLECULAR POTENTIAL, U

U~ (/)"

hw €
X = xi.:'iff f T (6.63d)

INTERMOLECULAR DISTANCE, r
In other words, the Maxwell~Boltzmann dis- -
Figure 6.2~ Typical intermolecular col- tribution of kinetic energies is shifted by

lision potential, the amount €, at the point where the colli=_ | 3

sion systems climb the repulsive interac-..
tion. To account for this, Eq. (6.61d) is modified as follows, again changing the
variable of integration from xj, the dimensionless initiai kinetic energy, to x, the
dimensionless effective kinetic energy at the turning point.

0O

a, = g exp(; _2’.% + {?)J- S(x)(x * 5"—1;”,—: - ;—T)e"‘ dx (6.61e)
(hw/2kT)+(e/KT) .

Except at extremely high temperatures beyond the range of usual incerest,. the
value. of x. 1s so large that the-approximation of Eq. (6.56) for the Fourier trans-
form 1s fully justified. Also, the value of x % hw/2kT - ¢/kT may be adequately
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replaced by simply Xps When this quantity is pulled outside of the integral, and
finally the lower limit of the integral can be .adjusted to glve the entire Gaussian
definite integral without. serious error. Then the final expression. for the rate

coefficient given by the one-dimensional collision model, including the effect of an
attractive potential and of energy conservation, 1s

as E 1/2 - .
) 1, 1y m\( e)/2n 3/2_=3xp F(hw/2KT)+(e/kT)
w5 (b )G 0 e e (€-610

6.8 RELAXATION RATE OF DIATOMIC, HARMONIC OSCILLATCR-GASES

Usually the experimenter does not measure transition rates to and from a single .
vibrational level, though this is now possible in some cases with the extreme selec-
tivity afforded by laser absorption measurements, but rather he typically measures a
total relaxation rate for the flow of energy into or-out of the vibrational mode after
a sudden disruption of the equilibrium state, such as provided in.a shock tube or a
supersonic expansion nozzle. To compare theory with the experimental results in this
case we are interested in the relation between the .different rate coefficients

an+1,n = (n + Da,o ‘ (6.64a)
ORIGINAL PAGE IS

OF POOR QUALITY o

n,

by ™ (n + l)aol = (n + Da,q e—flw/kT (6.64b)

The relations given by Eqs. (6.64) merely reflect the dependence 6f the matrix ele-
ments y>—on .the quantum. number, of course, ,

The total relaxation process in the gas is described by a .set of master equa-
tions, which for inert collision partners with number density N, is

—dNo
dt ~ (aalNo - o‘lf'JNl)Na

Tqe " @My F Ny = e N, = o NN, (6.65a)

dt * (dn,n+1Nn + o‘n,n-1Nn - an+1,nNn+1 —'anrl,nNn-z)Na.
where N, 1is the number of oscillators in the nth quantum level.
equations for -dNp/dt is multiplied by th
are added together to give

Each of these
e appropriate quantum number n, and all

«® «©

-} x -]
d . , ,
dt zo: nN, = (Zo: R R 21 noy n-1tn - 25:' DOk, nMner ” ? nan-x.nNn-l)Na_

(6.65b)
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The summations can all be started at n =-1, of course, without changing the equality.
Collecting like terms in the first and fourth sums and in the second and third sums
of the right side of Eq. (6.65b), by appropriate changes of the summation indices, we

obtain
-]

had ©
d S |
-4 ; oy = (;1_ I Zo: an'n+1Nn)Na_ (6.65¢)

Now introducing the relations of Eq. (6.64)
d (-} «© (-~}
- 3 20_‘, N = [21: 'naloNn - 20‘, (n + 1)<men:|N‘il

=[€1° 2, -, X “‘_.;_.‘f«l)Nn]}fa _,  (6.65d).

The sum hwf:nNn is just the total vibration energy, E,,. and Z:Nn is just the total
number of oscillators N. Multiplying Eq. (6.65d) by hw, we obtain

dE,
- g0 = [(@,0 = 9o;)E, - hua_ NIN,

%1
= (0,5 - aol)Na(év - huN E:;_:_E;:) (6.66)
The relaxation time 1t is defined as the constant
B NI (6.67)
10 oL’ a

and the constant term huNag, /(0,5 = 0gy) 1s just the equilibrium vibrational energy
in N harmonic oscillators given by the Einstein formula

thaol

Nho e-hw/kT req

= - o (6.68)
%0~ %1 1 - e~hw/kT v

thus, Eq. (6.66) may be written

- &4 Ll
d(Ev E, ) E, Ev

- qt = p (6.69)
which can be integrated to give
E,(t) - ESY = [E_(0) - EE9]e7%/T - (6.70)
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The pressure and the relaxation times are measured by the experimenter, and the
product of these two is related to the rate coefficients for 0 <+ 1 transitions by

!
E | Eq. (6.67), with Ny = p/KT. |
o . T kT i
X ORICIMAL PASE I pt = — i & — (6.71) -
R ) - O, = 0. e, {1 - exp(~huw/kT

r : L OF POOR QUALITY. 10 oL . 10t P(=hu/kD)] ;
; :
P The dov;nant factor in this relation is the exponential variation of a;o with
© exp[-(8/T)*/*] as given by Eq, (6.63a). Thus, a Landau-Teller plot of &n(pt)vs T~/3
. ylelds essentially a straight line over a wide range of T. However, the temperature .

: dependence of the pre-exponential terms and of the additional exp(-hw/2kT). result. in |

; a nonlinear Landau-Teller plot at very high and very low temperatures.. This addi- - }

: tional temperature dependence must be accounted for if one .seeks to deduce an accurate f

: value for Ec, and therefore of the potential scale factor L, from the slope of the

3 Landau-Teller plot. For example, the total temperature dependence of a;, given. by L

; the one-dimensional _analysis leading to Eq. (6.61f) is o

| ]

: 10 * o= (8/T)/3+(hu/2kT)+(e/kT) (6.72) | {

; e |
", where 6 1s 27E./8k. Note.that in the pre-exponential factors of Eq. (6.61f), the . ; i
A temperature dependence of U just cancels the dependence of x; 2 or (Eq/kT)/2, : 1
: However,_ in a suhsequent section on 3~dimensional collisions .it will be found that the.____
3 quantity S, is not really constant, but varies as velocity u or (kTx)*/2, Then,
: evaluating S, at xp, for purposes of integration, leads to the corrected expression
8 1/3 1/3
? o - (%) o~ (8/T) " "+(hw/2kT)+(e/kT) n(6.73)

Thus the product pT _given by Eq. (6.71) varies as
1/3_
.- C(T/e)2/3 e(6/T) (e/KkT) v_ 6.78)
P sinh hw/2kT ’
F‘ This is the expression that. should be compared with the slope of a Landau~Teller plot -
. ' to obtain a quantitative value.of 6 and L. If we let £ = (k’l‘)"l/3
!" : 3
o pT ~ sinh B%?— exp[(ke)llsg - e£®] (6.74a)
L
| 4 2p1) . (o) /* m 2k P - —2— (¢ + B2 corn De (6. 74b)
dg (kT)zla 2 2kT/]

Thus, we see that ?f kT 1is neither too large nor too small, the slope of the Landau
plot is just (ke) 4%, However, if kT  1is large enough to compare with k8, the slope _
is reduced by the.second term in Eq. (6.74b). On the other hand, if kT is small ...
compared with hw or €, the last term in Eq. (6.74b) can reduce the slope consider-
ably. Thus, #n(pt) will follow an S-shaped curve when plotted as a function of

(k'I‘)“*/3 over a wide enough range of temperatire.
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Figures 6.3(a), 6.3(b), and 6.3(c) show some examples of Landau-Teller plots fo
Nz, 02, and CO for various collision partners. The theoretical relation is fit to tl
range of experimental data on each plot. Within this range, the plot is generally
linear, though at low temperatures some curvature has been observed. The values of
the constant coefficlents 6 .and C, defined by Eq. 6.74, which fit these experimental
data are summarized in table 6.1. The potential well-depths, €/k, are those deter- i
mined for Lennard-Jones potentials that fit viscosity data for the. pure gases; for . _—
unlike ¢ollision .partners 1 and j the well-depth has been taken as the geometric 4
mean, that 1s e = (¢q¢ y1/2, The characteristic length L of the potential inter- !
action is calculated from (see Eq. 6.58a)

c 2k8
=

1 =
4ﬂ2mw2 Zanmwz

(6.75;

e e

The values of L are seen to lie in the range from 0.2 to 0.3 &; this is about 30% |
larger than the values obtained by fitting simple linear expressions to a Landau-- !
Teller plot, that is, neglecting the corrections for-the impact velocity increase due : g
to the potential well and also for the energy conservation leading to.detailed
balancing between o4, and @ ,,. Such linear fits_are shown.by the dotted curves in
figure 6.3... . R
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TABLE 6.1.- CHARACTERISTIC CONSTANTS WHICH FIT 3-DIMENSIONAL . j
THEORY TO MEASURED VIBRATIONAL RELAXATION TIMES : ]
Relaxing Collision| | ‘ ]
oeeillator | Bo/ks K|V ey | €fks K| €, atmesec 6, K | L, & |
N2 3395 Na. 95.9 | 7.01x107%% | 3.12x107 | 0.27 ' 1
0s 2297 Ar 118.7 | 2.75x10"12 | 1.47x107| .24
02 118.0 | 7.58x10"%1 | 8.60%10°%| .19
He 29.5 | 1.49x107° |2.26x10°| .21
H2 60.2._| 9.63x10°° | 1.43x10% | .23
co 3122.5 co 101.6 | 3.83x1071%| 1.66x107| .21
He . 27.4. | 1.78%x10°2° | 6.38x10% | .26
Hz 55.8 | 1.28x1071° [ 4.37x10%| .30
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The values of A giving the magnitude of the repulsive potential in Eq. (6.44)
can be derived from the constant C; typical values are the order of 1000 eV. How-
ever, the value of A 1s extremely sensitive to the exact fit to the data which is
chosen, and considering the scatter in the data and the narrow range of temperature
over which data.is available, these values are .uncertain by at least factors of 3
or more.

[N

6.9 SEMICLASSICAL APPROXIMATION, THREE-DIMENSIONAL COLLISIONS

PN T

v The perturbation potential is commonly assumed to be. a linear superposition of

3 exponential repulsions (refs. 21, 22), as previously done for the one-dimensional .

. model. Mies (ref. 23) suggests that this may be an acceptable approximation for

o heavy atom: harmonic diatomic oscillators, but shows that such a potential does not

Ff closely reproduce the time interactions for the He-H, collisions. Thus, althsugh the
linear superposition model will usefully illustrate the procedures involved, the

quantitative results must be viewed with some skepticism. To prouceed, we consider.a

homonuclear diatomic oscillator .impacted by an inert collision partner and let the

interaction potential be

TSTETY

RSO

U= ae T/l g om Tolly (6.76) ‘

LN T T Ty -

where again A determines. the scale size of the potential and L i1s a characteristic
length.. The distances r, and r, are measured between the atoms of the diatomic
oscillator and the inert collision partner. Figure 6.4 illustrates the geometry of a ‘
three-dimensional collision with miss distance b and with the center of mass of the . i
%

diatomic molecule at the origin. Only one atomic nucleus is shown; the other is
diametrically placed. The relative motion between the oscillator and its collision.
partner is assumed to be determined by the spherical part of the interaction.poten-
tial, With this assumption, the collision trajectory lies in a single plane (the XY
plane of fig. 6.4) and the distances r; and r, are.

PR e A s e

h 2 1/2 - -'
r, . = r[l T (-%)sin 8.cos(¢. - %) + (—2% ] (6.77). .

where r and X contain the Sunctional dependence on time involved, and p 4is the | j
distance between the atoms..of the harmonic oscillator. We assume the collisions. are
weak enough that (p/r) <1 for all r. Then reasonable approximations are Eoy

| ¥y, =T 7 5ain 0 cos(d - X) . (6..28) ’
UWQLZAME-SZ}WQQSh[f% sin 6 cos(¢ - xﬂ (6.79) E q

The bond length p 1s very nearly equal to its equilibrium value. po, and the
angle ¥ 1s small in the region near the turning point where the perturbation con-
tributes most to the Fourier transform of Eq. (6.35). Accordingly, the perturbation
is expanded to_terms of first order in (p - pg) and X_

p_sin 6 cos($ - X) =~ Pe 8in 6 cos ¢ + XPg sin 6 sin ¢ + (p - pe)sin 0 cos ¢
(6.80)

o el Rl MR i n B
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Figure 6.4~ Diagram showing collision coordinates. l
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Then 1if we let & = pe/2L

U == 2A e-r/L[%osh(G sin 6 cos ¢) + x§ sin 6 sin ¢ sinh(S sin 6 cos ¢)

p-0P

+ ——-gin © cos.¢ sinh(8 sin 6 cos ¢) + . ._.] (6.81)

2L

The spherically symmetric part .of the potential used to determine the collision
trajectory is obtained by averaging U  over all configurations of © and ¢

0 =2a e-r/¥<cosh(6 sin e-cos_¢)> (6.82a) .

Strictly speaking, this average should be performed weighted by appropriate wave
functions. For example, in small perturbation type collisiouns where the perturbed
wave function remains essentially in the initial state, the average would be performed
weighted by its initial state wave function. Unfortunately, the rotational states of
molecules are strongly perturbed during the collisions of interest, that is, those
¢ollisions with sufficient energy to. promote vibrational transitions. The assumption
most often used in the literature to get around this complex and mathematically
awkward situstion, is that the rotational wave functions are so strongly mixed during
the perturbation over a variety of angular momentum quantum numbers. £ and their
projections m, that the rigorous average is approximately tHe simple spherical
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] average as though the molecule were in its ground rotational state duriny the

- collision .
| ORIGINAL. PAGE 1§
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ﬁug.ZA.aa._r/ §-B§""'" OF POOR QUALITY (6.82b,
« . Stalléop (ref., 24) hes further analyzed this type of approximation, welghting the

interaction potential with the initial wave functions for transitions from 2 to
2,0 t 2, and &.2 4 for all possible values of the projection quantum number m anc
averaging the resulting probabilities. over all values of m. He finds that the tran-
sition probabilities are decreased by factors the ordéer of 2 for typical molecules
and collision .velocities of interest. For simplicity we will use the spherical aver-
age of Eq.. (6.82b) to determine the. classical trajectory;_this will suffice to

{l1lustrate all the methods involved, at least. -

O dre- SRS

Let the distance of closest approach be r = 0; then‘the_ggggpgégfwgan be 7?‘
expressed T _1

U=T0 ef(r-c/L)[%osh(G gin 6 cos ¢) + X8 sin 6 sin ¢ sinh(§ sin 6 cos ¢) f

M ) o e S LI AL S AR D

N ‘ {
] 4
0= Pe : 8 . d !
+ 3L gin 6 cos ¢ sinh(§ sin 6.cos $) + . o TR (6.83 ; i
where ﬁo is the spherically averaged potential at the point .of ¢losest approach ‘ 1
;t 0 = 2A<cosh(6vsin 8 cos ¢))e'°/L = ZA_Q%EE_Q e-c'/L (6.84 :
i o 1

!
Exercise 6.9: Derive Eq...(6.84). . %‘ .j

.‘% 3

i

£

i

g

i The first two terms of Eq. .(6.83) are functioms.only of the rotational angular

2 coordinates and are responsible for elastic scattering and pure rotational transitio .
3' only. The third term, linear in (p = Pa)s leads to single quantum jump vibratiomal i
5 transitions in the case of harmonic oscillators.. The higher order terms or anharmon !
terms in the.wave functions would, of course, introduce multiple quantum jump

transitions.. |

. Since the third term of the perturbation, Eq. 6.83, is the only one which.con- .
3 tributes strongly to the vibrational transitions of interest, this is the only term Cy
' which needs to be considered in the perturbation for present purposes. We will '
expand this potential to terms of order 83

o B -(r-o/L) P~ Pe ( 2 2 §j_ ¥ g b )_;_Q__.
U U, e. -—?ﬁ:—f § sin“ 6 cos® ¢ +_ sin’ 6 cos” ¢ + o . . Inh &

Q. 6 s
(6.85

and use these terms.as the total perturbation. The. full series is convergent, but.
converges slowly, so.the truncated series above no longer exactly represents the sum.
of exponential terms postulated in setting up the problem, Eq. (6.76).. However, the
true interactisn potentials are not exactly of exponential form anyway, so the
approximaticn involved is not conceptually important; its use will greatly simplify _
the mathematics required and will suffice to illustrate all the methods used.

o AR i

106

e e b e+ e A o e e S S TISST T
= P ¥ | i .




LEET TN

SRR I A S et A A andaliaie PSS SR | AR

P 2 e i A RS SRR A i A IR M it PEAR
T
- e .

ORIGINAL PAGE IS
OF POOR QUALITY
When rigid-rotator, harmonic-oscillator wave functions are-used with the pertur-
sation of.Eq. (6.85), the transitions are limited to single vibrational quantum jumps
(Av = £1) and even numbered rotational and magnetic quantum jumps. (A% = 0, %2, 24 and
m = 0, £2, t4). Note that the symmetry of the rotational wave function is pteserved
in these transitions, consistent with the expectation that collisions are unlikely to

change nuclear spin. In this case, rotational symmetry must be preserved to maintain
antlisymmetry of the total wave. function.

The time dependence of the.perturbation 1s contained in the factor
exp[-(r - 0)/L). 1If energy and angular momentum changes.in the internal state of the
nolecule are negligible compared with the kinetic energy and angular momentum of the
collision partners, the latter two may be treated as conserved.quantities. The clas-
sical rrajectory in this case is defined by Eqs. (2.29) and (2.30). .When the colli-
sion is head on (b = 0) the trajectory is that given by Eq. (6.51). Expand a solution b
of this form about the point b = 0 and stipulate that it must have the correct .. i
first- and second-order time derivatives at the point of closest approach (r = o, .
= 0), Such a solution is — %
1
i
{

e~ (r-o/L) | sech? at (6.86)

where ‘ 4

e kEeS) @ a-ot-B] e |

20

e = — (6.88)
mu ?

2 4

This value of a gives the potential the correct form near the turning point at the
expense of some mismatch in the asymptotic behavior. However, the Fourier transform,
Eq. 6.55, is but slightly affected by the slowly varying part of the potential far

from the turning point; it is primarily determined by the region where U changes :
rapldly, that is, near the turning point, - i i

PP I

The transition prcbability may now be expressed in the same form as for the one~
dimensional colliunear collisions

P = 4ty (L) (L) e/ (6.89)

except that ¢ the fraction of total kinetic energy E which is converted into per- ,
turbation potential at the turning point, Eq. (6.88), is now included in the pre-

exponential term. . Also the matrix element is for -a specific transition including not :
only a transition in vibrational quantum number n, but also.in rotational and . :

magnetic quantum numbers £ and m

Yntmn'2'm! <E '2'm!

Ty A I I

p=29
2L

;
¥
6
¢nzm sinh .§ %
(6.90)

3
2 (6 sin? 0 cos? ¢ + %r-sin“ ) coa“¢)
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Indices.on P, vy, and w indicating the specifi¢ transition have been dropped for
economy of notatiom, but these will be introduced later, At the moment, we wish .to
obtain an analytic expression for the cross section. Let P,, ag, and 6, denote
the particular values of P, a, and ¢ for head on éollision (b = 0). The cross
section for fransition may then be expressed.

3 RIGINAL PAGE IS |
§=F J. 7 21 db gF’POOR QUALITY.  (6.91)

According to Eq. (6.89)

2. e(2) exp[— (o 1)] (6.92)

o]

and from Eq. (6.87)

a, -1/2
0 2L

2. [1 - - e)(l - _)] | (6.93)

For the exponential form of the interaction potential assumed here
L do L v

¢ =aq, (1 - -O—o- n e) s - (6.94)

in which case (see Eq. 2,30)
b? = 02(1 ~-€), 2mbdb = -m0 [1 + = 2L (L= e)]cls: (6.95)

With change in the variable from b to ¢, the cross section of Eq. (6.91) becomes

102 -(Tw/ag) (ag/a~-1)
S =P J. 1+(2L/c)[(1-e)/€] ‘e ¢/ =0 de (6.96)

Since (mw/agy) >> 1, the majfor contribution to the integral of Eq. (6.96) comes
from the region a4 ~a, and € =~ 1. The integrand is therefore expanded about this
point to terms of first order in (1 - ¢):

o2 Sl Q@Uo)U- . |
TF (LI (A=) /e] "0 TF (L/o (1= + « + » =~ "% (6.97)
while from Eq. (6.93)
%o 1 2L .y
2.1~d (1 - 3;)“ -6 - (6.98)
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Next, the cross section is averaged over the Boltzmann distribution of collision
energies to obtain the rate coefficient a. As in the one-dimensional case, we
approximately account for conservation of energy during collision by letting the .
effective collision energy be the average of initial and final energies, as in

Eq. . (6.63c), and express the rate coefficient as Eq. (6.6le). The cross section has
the form

}

i To this approximation the cross section becomes _

]

- - ORIGINAL pact 15

T § = mo’pP exp|- % - 2k (1.- ¢)|de . .OF POOR QuALITY

. o°o 2a %%

o A U= 0 § o S

i

g - - y - 2

L s l. exp[z('nm/Zao)(:.-j ZP/OO)],HN ; . HZOPO :  (6.99)

o"o (nw/2a )[1 =-(2L/c )] @ > 1 (mw/2a)[1 = (2L/0 )]

E:A' The factor (2aoc§/w)(1 —-2L/oo),'1 ~is the effective total cross section for vibra-

F‘ tional transition to be used with the one~-dimensional collision transition probability
; Po. This factor is not constant, as was assumed in the one~dimensional model, but is

E ©  approximately proportional to a, or the collision velocity u.

;

E

P

E

)

:

L 162 1/2 1/2
_ _ 0 4x -(xc/x)"/
: s - S*(l—:—fmg)(xc) e e (6.100)

where the constant .8*% dis

.
S = L, l)nY ¢
L s* (P 7t 2)(2u)<hw) (6.101)

Substituting these relations in Eq. (6.6le) one obtains

. o Us* e$(hw/2kT)+(e/kT) . wo; 4x L/2 Jhw e —x-(xc/x)l/zd
* s e 1 - (2L/o,) X, X = 2KT kT)e" X

(hwt2e) /2KkT (6.102)

where. a4 gives the rate coefficient going to the adjacent higher vibrational level
while o_ gives the rate coefficient going to the adjacent lower vibrational level. .

The integrand is.evaluated at the maximum just as before, including the distance of
closest approach o

» 4x31/2 no? ® 2
L o .. o~ 3% #(hw/2kT)+(e/kT) o (3/2xm) (=) °
+ s \Xc 1= (2L/co)
X hwt2e) /2kT (6.103)
Performing the integral and noting that 4x; = X. this becomes
=”§'( oL, bymy(Ee)(__™ )7 =3xn¥(ho/2kT)+(e/KT) (¢ 1q,
% =s\"772 “2)(2u) hw/\I - 2L/a, % 6.) ¢ -104)

109

ke i -

L ke .

2T LR i T frsT

PR

Rz

e oo

T T e et n. Do T

et 3

3 e



P T T T T T T T e T .

T ARy SEETI W eI e T

- P 2ot o B —‘_-w-w::%y LT T e e T e T YT T

To express ¢, In terms of the.temperathre T, use the relation expressed by
Eq. (6.84).

- ginh §

A -
9, = L. 4n R A= 2A 3 (6.105a) .
. A 2A

(0 ), =1L An == =L N ——p——————m (6,105b) .

o'k, xka E:/s(kT)z/s

Then the c¢ross-séction factor becomes

no? mL? an®[28/EL° emy®/ )
T 5T T (6..106)..

(1 ) 2L/o‘o)x 1- 2/2n[2A/E1/3(kT)?/3]

This logarithmic dependence on temperature is very weak, so the pre-exponential
factor in o varies essentially ?s the product of " U and xm/ (see Eq. 6.104), or in
other words as. the product of 7! and T" « Thus, the overall variation of «
with temperature is taken to be

a~ 1% expl-(e/1)2/° + (e/kT) 3 (hu/2KT)]

as.in Eqs. (6.73) and (6.74), and.-in calculating the values of 8 and C in Table 6.1
and the curves of pt 1in figures 6.3(a-c).

6.10 VIBRATION-ROTATION EXCITATION

Now recall that the matrix élement vy 4is a function of the initial and final

quantum numbers. .Consequently, the rate coefficient o describes the rate of transi-.

tion only between those two statés, In order to compare with vibrational relaxation..
data, a total rate coefficient for the vibrational transition n.-+n t 1 is needed;
in particular for the 1 + 0 transition. The matrix element is viewed as a function
of the differences

An=n'"~-n, AL = &' - ¢ and Am =m' - m..

v?(An,A%,6m) = v2(n,%,mjn + An,% + A%,m. + Am) (6.107)
where An = %1, A2 =0, %2, *4, and Am = O, %2, 24 for the perturbation used here
and rigid rotator, harmonic oscillator wave functions. The total rate coefficient for

a given vibrational rotational transition is found by summing v? over all possible. _
magneétic quantum number ¢hanges Am and averaging over all initial values of m,

2'. = —-——
(8n,88) = 5 § :

m=-% Am=( +z,:u

Y2 (An,A%,6m) (6.108)

Hansen and Pearson (ref. 25) evaluate these matrix elements. for. the perturbation of
Eq. (6.85), as given in appendix 6A.
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y2(£1,0) = (—125- -g—- 630)<cosh(6 sin & cos ¢)> (“ + (1/2) # ‘”2)) (6.109)

8mLw/h
2 » 1 82 268 . ofn + (1/2) + (1/2)
v2(£1,22) = (;;o ‘ez * 2835)<cosh(§ sin 6 cos ¢)> ( ™ )(6,.110)

2 s* (n + (1/2) '(1/2))
ve(£l,24) = {=====](cosh(§ sin 8 cos @) (6.111)
(2268°)< > 8mL w/h .

The sperhically averaged angular part. of the potential may in.a first approxima- o
tion be equated to (sinh.$)/8, as in Eq. (6.82b), but in more rigorous fashion would \

be a sum over all & and m, which would depend somewhat on vibrational quantum level .
n.

Stallcop (ref. 26) derives similar expressions for a complete expansion of the
interaction potential and finds corrections for the higher order terms in §

- 2 62 R L 3 '
‘. § ‘
P 2 " 6 1 :
3 2 (L .8 56 176 ) ¢

- Y2 (£1,22) (30 e - T R I (6.112)

h

2(21,44) = A LA !
2 Y OREL,2 22680 © 166320 © * * ) * |

It can be seen by comparison with the relations above that the results are the same : ]
o as for the truncated potential up to terms of order &2  but are larger in the higher i
: order terms. Stallcop (ref. 26) also develops c¢orrections for some. of the .other ?
terms dropped in the expansions leading to the rate coefficients and finds that for

realistic values of § and L these can change some of the values by factors the

order of 2. The general results are, however, similar to the above.

Perhaps the most important correction to include is the change in circular fre-
quency & that occurs at different rotational levels. To terms of second order the
energy eigenvalue of a given state is

1 ‘
= hwo(n +-2-) + B2+ 1) + . .. (6.113) , i

n,%

where wgy 1is the harmonic oscillator frequency and B 1is the_rotational energy
constant. To terms of first order in ¢ ;

W 2B A%
: o An + ( hwo )2 + ... (6.114)

The rate coefficients (Eq. (6.104)) are proportional to wt/3 exp(-3xy). (The expo- : ’
nent on w - is 1nc0rrect1¥ given as 7/3 in ref. 25), Note that the circular fre-—.
quency that appears in y*° in Eqs. (6.109)-(6.111) is the uncorrected value, or

wo — and corrections to the first-order rate coefficient can be expressed ..

; R(8L) = = -(L*’-)”ae‘?xm[(w/i»o)?/a-l] (6.115)
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where oy i1s the rate coefficient obtained.when w 1s equated to wy. Expand to
temms of first order dn X . \

hwg
which is typically less than 0.0l for realistic molecules and |a%| = 4, to obtain

R(AR) = (1 = ap)*/3eZXmM o (1 4 apys/3¢™2%mAd (6.117)

The correction factors are now averaged over all initial rotational quantum numbers

B
R(AR)) = — R(AR) (22 + 1)
< "‘> kT-ngﬁ ¢

Hansen and Pearson.(ref. 25) use an approximate integral expression and Stallcop. ,
(ref. 26) uses a Laplace method that gives a better approximation at high temperature; | 1
both find that the correction for this. dependence of w on the rotational quantum B
number & can increase the total rate coefficient by about 50%.

_Bg(z+1)/kT (6.118)

The potentials responsible for vibrational excitation are not necessarily the . 1
same as those responsible for scattering. For example, if the total electron spin .. ¥
and orbital momentum are not zero for the colliding particles, these can couple in "

different ways.to yleld a multiplicity of-interaction potentials such as shown in ; !
figure 2.8 for collision between two atoms. Then.scattering could largely be due toé :
long range potentials with larger values of total electron spin, and therefore larger
multiplicities; presumably these would have larger effective values of L. On the
other-hand, vibrational excitation.would be dominated by steeper inner potentials
resulting from lower total spin_coupling.. In such cases the potentials deduced from -
vibrational relaxation and from scattering represent different weighted averages of
more than one interaction potential. However, in the case 6f N, the ground state is .
128’ that is, a state with zero total spin and zero total orbital momentum; one thus . .
expects a single potential surface to apply to Nz=N2 or Nz-Ar collisions (unless the ‘ 1
simple LS . coupling scheme is broken in very strong collision perturbation). How-

ever, even this single potential is not necessarily fit by a single.exponential func- -

tion over the entire range of interaction. L = 0.27 2 was deduced to fit vibrational
relaxation data to.the.steep part of the N2-N2 potential, wheréas Meador (ref. 27) : 3
calculates that L = 0.4 & for the longer range part of the potential that contrib-
utes most to scattering. Viscosity measurements on.the. other hand suggest that the | .
N2-N2 potential also has a Van derWaals attractive well with a depth about 0.1 eV, . ‘ 1
and it is not clear how all these trends.fit into a single potential surface. :

i . =

6.11 HIGH ENERGY IMPACT VIBRATIONAL TRANSITIONS. ...

Up to this point the vibrational transitions have. been treated. as a small per- ‘
turbation problem. At.low collision energies this is justified because the transi- =
tion probabilities are all very small. However, at high collision energies the R !
transition probabilities become large and may exceed unity, at which point the !
theoretical model obviously breaks down. In fact, Rapp and Sharp (refs. 15-17) per-
formed some numerical calculations using a close-coupled set of equations .such as
Eq. (6.28) and show that the small perturbation fails considerably before transition !
probabilities reach unity and that _multiple quantum jumps occur. Moreover, they found 4
that it was necessary to include a much larger number of vibrational levels than were : {
excited at the finish of the collision event, because some of.the higher levels were y
transiently excited during the peak of the collision and then transferred their energy
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back to the translational mode and to lower~lying levels as the collision event was.
completed.. Such. numerical solutions can be accomplished on any reasonably fast large _
digital ¢omputer, but an analytlc solution for multiple quantum vibrational transi-
tions, which is due to Kermer (ref. 18), is more. helpful in understanding the proceass.

Therefore, Kerner's method will be. outlined here.

Kernér sets up the Schroedinger equation starting from the classical equation of
motion of a one-dimensional harmonic oscillator subject to an external force £(t)

uy + ky = £(t) (6.119)

whére y is now.the displacement from the oscillator's equilibrium position. As the
oscillator moves, it does work against the external force

W= f £t + dy (6.120)

Note that if £(t) is in the negative y direction, W is positive as y increases
and this. amount.of energy is lost by the system. If £(t) varies slowly compared with
the period of oscillation in vy, this work may be approximated by

- AW : 1S
LERIOVES OR\G‘“%‘&'WGL\TY (6.121)
0

The Hamiltonian of the oscillator system is .thus

2 . 2
H = lz’a;~+ ]’5-27—- —-ff(t)dy
2
L sy (6.122)

o

o
g

Replacing the momentum p with the derivative operator 1h3/3y, Kerner obtains the
Schroedinger equation

n2 32 ky? EI')
"W gj“ [—‘é— - Y£<t>]¢ = ih 5 (6.123)

He then proceeds to comstruct a solution from the unforced solutions which are known.
Make the transformation

b= oy - u,t)ed (6.124)

where u and g are functions of time to be determined. Let z =y --u. The elements
in the Schroedinger equation then become

%;g_ - _g_:g; eBY + 2g 87 34 g7y o8 1
%%-* %% e +.(z + u)gd e84+ %%_%%_egy
( (6.125)
E%: = E%i'+ kuz +:E%i
yf = (z + u)f J
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and the transformed Schroedinger equation is.

2 2 2 2 .
a‘ - & 9-1+( )-9:4-[“” +(ku-f—ihg)z-»--‘f--fu-irmg-ﬁz—ﬂ-]q;-_in?i w
g TR 2 v oJ ot ’
! {
F (6.126) 3
; v~ " Now ¢hoose g and u such that the coefficients.in 93¢/0z and z all vanish
3
-ua = ihg . (6.127a) .
ku - £~dng =0 (6.127) |
From Eqs. (6.127a and b) we observe i
, i
wu + ku = £(t) . (6.128) ;
In other words u is just.the solution for the classical oscillator subject to a %
forcing. function, which we considered in section 6.2. The initial conditions are %
u(-=) = 0, u(-=) = 0. The Schroedinger equation now reduces to }
|
h2 324 (kzz" ku? - _h%g%\ .. 3¢ 1
7% 32 {5t 5 - fu - ihug T ¢ = ih.at (6.129) ~
1 Now let 3
;i 2 . n2g?
= 8(t) = M- fu - ahug - BB ORIGINAL PAGE I3
2 ., OF POOR QuALITY
= ku” _ - ku?) + L u” :
: > fu + (fu - ku®) + P {
=.l“_._-£"ﬁ='r_v (6.130) | '.f
g 2 . 2 * : .
: ’ " thus &§(t) is just the classical Lagrangian. 5_ :
3 { 3
h? 32 [kz J; Lf
- 5 a—zZi+ L+ 50)|o = 1n 3 (6.131) -
; Next separate the variables 2z and t _ :
i i
¢ = ¢(2)6(t) (6.132) I
Then
0 ]
B (e Juo .
) , (6.133) .
f Rl L kel o thde o
g 20 452 ¢ 2 § + g d¢ « constant

Initially at t = -, u=0, z =y, and ¢ = ¥n

s I et +
I
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=BV, . (6.134)

hus, the comstant in question is just the initial vibrational emergy En = (n+1/2)hw
ad the functions__¢(z) are the harmonic oseillator.wave. functions

2,2 ‘
0_(2) =N, &% H (o2) (6.135) |
ORIGINAL. PAGE g
ere ~ OF POOR QUaLiry
1/2 0
N2 = , ats= (E%) S U (6.136) !
L Y| h R

e function 8(t) is the solution to.
[En + 8(t)]e

-g-e— = - i !
ich 1s |
L Pt P
8 = exp[- i f (E_ + é(t)]dt] (6.138) :
- n i R
Thus, we have a class of solutions formed from the stationary states of the unfecrced i .

problem and with a phase nt I(En +.8)dt

b Gxit) = o oBY =g TR/ Ly TRV

RN

t 2 2 y
_ i _ -a°(y-u) /2 _ g
= anxg”h[py _Q(Ef}_,_+ G)dt]e Iin[oc(y u)] (6.139) i
. i
where p(t) is the classical momentum wa(t) and u(t) is the classical displacement §
of the oscillator starting from rest and subjected to the forcing function £(t). ;
Next we expand this wave function in the orthonormal set of haimonic oscillator wave .
functions i i
2,2 P
V (y,t) =N e /2y (ayye LFat/ (6.140) "
n n ‘
Let m be the initial state designatien
v (vet) = X b (B)V (y,t) (6.141)

n=0

Multiply both sides of Eq. (6.141) by V:{(y,t) and integrate over all vy

-]

bon(®) = [ 0V a0y (6.142)
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bl o o

then the transition probability, at time ¢t, that the oscillator finds itself in the--
unperturbed state n, after starting from initial state m, is b:m

t
i
bmn N I_‘l_n exp(t [E t - I_w(El}l +.6)dt]l

* 2. 2,2
X. f exp(-:f ut'xy) exp[- %— (y - w)? = 9—-2L]Hm[_a(y - u)]Hn(ay)dy (6.143)

2 -—

@®
= i . 2 2,2
P =Moo J: i} exp['h' wiy = 5y - w? - S laly - wIE (ayXy|  (6.144)

mn

Transform variables to x .= ay, v = au, o? = yw/h and define

.

- . Y 2
I = J‘ exp[i:f‘ S v) --%-Jum(x - v, () (6.145)

-0

then the transition probability may be expressed

2
l Imn

-—m (6.146)

Pmn
™27 mint

The integral Imn is evaluated using the Hermite polynomial moment generating

functions e e
4 (x)sn
S = exp[x? - (s - x)?] = -—‘-‘-nT- (6.147a)
n
, Hm(x - -v)tm '
T = exp{(x - v)? = [t - (x - v)]%} = e (6.147b)

L ] * 2
J-ST exp(%i - x% 4+ xv - --—)dx = 22 n!m! I :;cp‘('i—(vm-’-‘-x2 + xv - 12- Hm(x.-v)Hn(x)dx
n.m mn )
ZZ il | (6.147¢)

Complete the square of the exponential term in the integral on the left side of
Eq, (6.147c) .and integrate to obtain
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o0
2 2 :

J. exp‘-[ - (a + t+-§-)] + 28t 4 8V - tv - -Yz- + -i-:l’_)-}-(-}dx

] T .

v? iv L v\)?

- exp(ZSt + 8v - tv.~ —z—)exp[-u-,- s+ t + exp{- x - (s + £+ ,7)]
1 -0
| ar
" A4 . Y - hA
{ w"[ —(stet 2)]} d[ (o t‘+f2)] (6.148)
¢
!
|

The integral on the right side of Eq. (6.148) is just YT exp[-(V/w)2/4]. Thus we
have .

i L/, . n stI
{ /Fexp-z(v +—) +23t+(v+—)8- V'_ m!nlnn

(6.149)
Now .v = au, o® = pw/h, and k.= uw?, so .
02 .2 2.2
v_ 2 _ Wu” + pwtu®
2 + v ™ 2¢ (6.150)

F Expanding the last three exponential factors on.the left side of Eq. (6.149), we
obtain.. k ‘ '3

k/2/ v iv\ _k /2 IYRY iv \". %
MY — + =—\s 27D =)
/e £ i\'rv) 23sded 43 /Z_u)) . Z (/E /Zu)'
exp( 2 " 20 3T T ‘ 2!
3 )

i K
= e o (6.151)
= vs olnl .

n m

For purposes of evaluating the integrals Ipp, we are interested only in those terms .
of the product where j+k=n, j+ 2 =m or k=n-3, 2=m-3J. Let m<n

m (_Dm--.jz(m-i-'n)/2(__\_;__'_:L_{,_)tl":](L ) _:Lj_)m-j'
-g/2 _ivv/2w o 5 VB 7 /o I
: , Tm - D@ =~ DI, = = (6.152)

/t e

» ; J-o
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2 2y nae =efvt . VAN qin ('1)4(""2“" + oy
1=
m 2
. T e ]
- DD e SR Z T (6.153) _

HCEIRICEN
=0
The final result for the transition probability is

2 -
m

I : i =3
- o -¢ _mn (-1)3¢
Pon .“Zm*nmlnl minl e ~ ¢ TR 6.156)
j=0 i

Equation (6.154) relates the quantum mechanical transition probability to the classi-.
cal energy change e in.the oscillator, subject to the forcing function f£(t), in
units of hw. Recall that e is the energy gained by a classical oscillator starting
from rest (see Eq. (6.150)), that is, it i1s identical with AE/hw given by Eq. (6.18)
When ¢ 1s very small, the transition P,, reduces to the usual small perturbation
value

P, ,=ce  —c¢ (6.155)

’ g€ << 1

but at large ¢, Py, becomes vanishingly small due to the exponential térm in
Eq. (6.155). The probability of adiabatic collision Py, also falls off as the

exponential
P =& ——1-c¢ (6.156)
00 € <<.1

rather than remaining unity as given by the small perturbation theory.. As ¢ becomes

large compared with unity, the transitions P,,, Po,, etc. grow larger and each goes..

through a maximum at a characteristic value of €. These harmonic oscillator transi-
tion probabilities are graphed in figure 6.5.. Values of P,y are shown in fig-

ure 6.5(a), The small perturbation value of P4, 1s shown as a dashed line for
reference. The sum of all probabilities is unity as it should be

® &

-€
- Y e
k=0 k=v

The classical oscillator energy gain ¢ 1s, of course, related to collision.velocity,
increasing as the velocity increases,

Im

k
= 1 (6.157)

P

Figure .6.5(b) shows the transition probabilities - P;y.. The probability P,, is
the same as. P, . The small perturbation value of P,, 1s just 2P,; as.given by |
Eqs. (6.53) and (6.54) and is also the limit of Kerner's value for small ¢

.18
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2
Prpm2e 01 §) —— 2 - (6.158)
€ <<

The adiabatic transition probability P,, is

P,, =e (1 = &)} ————1 - 3¢ (6.159)
€.<< 1

The transitions involving excited states are seen. to have nodes at characteristic-
values of € and. several maxima. The number of nodes equals the lowest value of
m.or n, This is characteristic of the solutions to the coupled set of equations,

Eq. .(6.28),.and shows.up in the numerical integrations of Rapp and Sharp (refs. 15,16)
For these numerical solutions one wants to truncate the number of equations involved
at as small a level as possible to conserve computing time. The number of levels
required can be determined by observing the minimum number which leads to a pronounced
dip in the solution approximating the nodal point with sufficient accuracy. Addi--
tional levels will need to.be retained if sclutions are .desired at higher collision
energles. where the second- and higher-order nodes occur. Treanor.(ref. 19) has com-
pared Kerner's solutions with the numerical solutions of Rapp-and Sharp, and finds.
satisfactory agreement. Figure 6.5(c) shows some of the transition probabilities

P,xs showing the two nodes in the solution involved in this.case. The sum of all pos~..

sible transition.probabilities, starting from a given quantum number, is always
unity, of course.

6.12 INELASTIC COLLISION EFFECTS ON VIBRATIONAL TRANSITION

Up to this point the classical trajectory has been treatéd as though it were
obtained in an adiabatic collision, and as a consequence the impulse functior is.taken.
to be perfectly symmetric-as it would be in adiabatic collision. The conservation of
kinetic energy before and after collision was. treated in a rather approximate manner
by assuming that the effective collision energy was the avérage of the initial and ..
final kinetic energies. However, one additional sink of energy is the upper vibra-
tional modes that become excited. during the collision process. This axcitation may

only be a transient one; that is, the energy is transferred back tc the kinetic energy .

mode as the collision partners recede from one another; out no atrempt has been made .
to account for the conservation of ‘energy during the peak of thée impulse. Rapp and
Sharp did account for this in their numerical solutions, but the simplicity of

Kerner's formulas cannot be utilized unless one uses a corrected expression for ¢&. ...

Hansen and Pearson (ref.. 28) developed an analytic approximation for ¢ that is
useful for this purpcse. This will be carried through for the one-dimensional collin-
ear collisions, and the corrections for three-dimensional. effects can be added by the
methods of section 6.6.

When a transition to anodther. vibrational state occurs, the classical trajectory
is distorted. The symmetrical part of this distortion has been accounted for to first
order by letting the.collision velocity be the average of the final and initial
velocities. However, an asymmetrical distortion is also involved. A skewed perturba-
tiou which conveniently fits the boundary conditions is.

U=y, L U, e seen®(at) (6.160)
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The relative velocity between collision partners is in this case

{: = 2a tanh(at) - b . (6.161)

and the constants a and b which fit the limiting conditions a t| m = are

u, +u
N DU TR |
a m Sgr—— Eoor (6.162)
u, - u
A f
b =5 ‘ (6.163)

The transitions of harmonic .dscillators involve just one quantum of vibrational
energy, so

%-m(ui - ué) = thy

2 2
h o 2 ui—uf - hm .. h (6.164)

a 2 2
(g tup- ™

=4

X
=

Vibrational transitions occur with sizable probability only when collision energy is.
large compared with hw; thus (b/a) << 1 1in most cases of interest, and the pertur-
bation has nearly the same shape as for the adiabatic type collision trajectory
assumed previously. The dimensionless Fourier transform to be used in Eq. (6.53) is
now, however,

Fay f et sech? (at)eiwt dt (6.165)
In appendix 6B the square of this transform is shown to become, for small w/a,

|F|? —————— 4n (‘;’) "“’/a(l + ba) (6.166)

wfa << 1

This reqult is the same as obtained before (see Eq. (6.56)), except for the factor
(1 + b2/w?),. which represents the corrections for skewness in the impulse shape. In. .
terms of the constant Eg

2 2, \? 2 2 .
bY (k) (a) . r(hw)”
(w) (a)(u) 2E_E (6.167)
Normally. the ratio hu/E 10* and hw/E < 1 for the collisions of interest, thus

(b/w)? s the order of 18‘ We ¢onclude that the effect of skewness of the pertur-~
bation potential on the.transitton probability is small, This small correction can be
accounted for by evaluating b/w. at the value of collision energy Ey which maxi-
mizes the integral of the rate ¢oefficient
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Since this correction is small it will be ignored in the following, in which effects
of transient storage of energy in upper vibrational levels during the collision

process are analyzed. It could, however, be carried along without undue mathematical

complexity,

For. transitions from the ground .state, which are of interest here for purposes of
comparing theory with experimentally observed relaxation-rate data, the classical
energy excited in a harmonic oscillator. at any time t by the perturbation potential
U(t) may be expressed

2

2
Y t
V(L) = hw (-%l) [}[ Ue(t)eiwt dt (6.1.69)

where vy,, 1s the harmonic oscillator matrix element of Eq. (6.54) when. n = 0, and
U (t) is the perturbation when.the oscillator is in its equilibrium position. The
subscripts on these terms will.be dropped from this point on for convenience.

The value of V and all its derivatives at t = 0 can be deduced from
Eq. (6.169), and to terms of first order in w™! (see apnendix 6C)

Vo = (6.170a)
dV) (d2V) (dsv)
avy o4V {4V . 4. (6.170b)
d%v 212m . mzﬁ
(%), = 552 el () (6:170¢)
[o] .

The subscript o refers to t =0, . These results are independent of the exact form

of. U, provided the duration of the impulse is long compared with w™!.

Now assume that the collision perturbation has the form given for adiabatic.
elastic collision but with a correction factor ¢(t) which will be adjusted to
satisfy conservation of energy near. the turning point

U=u, o =) /L -—U°¢(t)sech2(at), _— (6.171)

Note that. ¢(t) would include the asymmetry factor ebt discussed above, if we

wished to carry this term along,. For the present, however, we will be concerned with
only the symmetrical expansion of ¢ about t =0, If U is considered symmetrical
about the turning point (U = 0), ¢ and its derivatives at t.= 0. deduced from .
Eq. (6.171) are
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. d? 4°""
o = (__Q) .(—-‘E> =0 (6.172b)
' 0 dt3 o dt2n+1 o
, A
é, .,.ﬁ_+"2a2, (6.172¢c)
- o
(d*v/dt") U
| i"_g) - 2+ 12a% 52 + 8a* (6.172d).
g de’/o. 4, o -
3
£

i The function ¢ 1s required to be the order-of unity in the interval |[t| < 2/a,
o where the significant contributions to the Fourier transform appear, but we need not
S be. concerned with the behavior of ¢ outside this interval. For example, we ‘can. let ..
‘ ¢ vanish at |t| >> 2/a without loss of generality, so that a can take its usual

L definition, u/2L, to satisfy the boundary conditions on collision velocity

L = 2a tanh(at) -% (6.173)

! The asymmetrical factor ebt would be required to match the exact boundary condi-
’ tions, of .course.

With the perturbation.potential having the. form given by Eq. (6.171), the
kinetic energy is S

i *2. . 2 N2
T - BI =_..m124 (%) (6.174)
To conserve energy, the vibrational energy must be .
: 2. gaN2.
b VeE~-T=-U=E - [E%—»(%) + 4] (6.175)
The value of V and its derivatives at the turning point, in terms of U and its
derivatives, are thus .. ;
o Vo, = E -1, (6.176a) . ;
: . .
i - ‘j‘t—‘j) =0 (6.176b)
0.
2
U.
dZV) 2 ( O) [y
=} = -nL°.{—] --U o (6.176c) ‘
dt®/, Uo . ° ?
4 U_(d*u/ac*) g 4
(5o%) = -tmi? 22 4 12wt 2 <7 (6.1764) E
. | '
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When these values are matched.with the values given by E4qs. (6.170), we obtain expres-
sions for U. and its derivatives. at the turning poeint which, in turn, determine the

expansion ¢(t) about this point, Eq. (6.172).

First match Eq. (6.170a) with Eq. (6.176a) to obtain a quadratic relation for-

E/U,
. VE
(ﬁ;) "(ﬁ:) %2 =%  ORGINAL PAGE IS (6-177)
OF POOR QUALITY
for which the solution is
e 1[. 4eN/? ,
& ..2.‘[1' s (1 e &2 ) ] | (6.178)

The positive root is the one of interest. here. . The. quantity 4y?E/hw . is.normally
small compared with unity. For the homogenous diatomic molecule harmonic oscillator

matrix element Y4, Eq. (6. 54), —

472 E
hw 2.2 m, E _
m,w L . ¢

typically (m/m;) = 1 and E/E;, is the order of 0.00l. Thus 4y%E/hw 1is the order
of 0.04, and approximate expressions for Uy, and V, are

2
U~ E (1, - \;—wE) (6.180a)

With U, and V, determined, the remaining derivatives of U at t = 0. are easily
found by matchiqg the remainder of Eqs. (6.170) with Eqs. (6.176)

. d3U) «
U = —— = 0 (6.180C)
0 dta o)
2
i =- % _ (6.180d)
° mL? ’
(AN iy’
4 2
4y f) - _.._23 "—u -4 LZ(U > (6.180e)
These derivatives may alternatively be exgressed in terms of the collision energy E,
and the characteristic energy E. or 4m°mw 21,2
4ﬂém2U2 2 2.2
3 0 41w E” . e
Uo a - 5 = - (6.181a)
c c
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(6.181b)
Now a Taylor series expansion can be constructed for ¢ to terms of fourth
order in time
¢(t) =1 + a(at)? + g(at)"
Where the coefficients. a and. B are
¢ U V. 3
= _°_ =1 -2=-0,XE
a " 1 E B = o (6.182b)
2.
ORIGINAL PAGE 'IS. (d ¢/dc‘*) AR
OF POOR QUALITY 8 =——F%r—— ‘5‘[_33‘ B
o 1 fuw
(SHR TR
2 2E
1 (w) Y2E _ Y B ¢
== == =~ 6.182¢)
18\a/ hu 367 hu

The order of magnitude of these coefficients is easily estimated from the one-.
dimensional collinear collision case where <y is given by Eq. (6.54)

TT2m . 2 .
N 2“)E: = 0(1072) (6.1834)
Bm-'ﬁ- =~ @(-3x1072) - (6.183b)
These magnitudes .indicate that ¢ is indeed well behaved in the interval |at| < 2

as required. The correction ¢ flattens the usual adiabatic~like impulse near the
turning point but makes the impulse steeper in the region lat{ z 1, where the.con--
tribution to the Fourier transform is largest. This transform is now

= f [1 + afat)? + B(at:)‘*]sechz(at:)c‘eil,mt dt

(6.184)
which in the limit (w/a) >> 1 {s found.in appendix 6.B to yield
4 2 " 2. .
2w g 2f -mn/av( _Ta 78 ) :
IF|? = 4n (a) e 1-TE LRy ) (6.185)

Again this is the same result as for adiabatic élastic collision trajectory at the.
velocity u . éxcépt for-the last factor, which is thé correction for distortion of
the impulse shape required by consérvation of energy._
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For. one-dimensional collinear collision matrix elements v, the correction factor
to be applied for the effect of energy conservation during the collision impulse 1s
approximately given when the relations. of Egs. (6.183) are used for o and B

} 2
» = op'm oL E
. R = [ - e (TZZ‘*‘ .ﬁ:)] (6.186)_

Normally,_ E/E. is somewhat less than 1/144, so the result is but weakly dependent .on
collision energy and primarily depends on the ratio of collision-reduced mass to
oscillator-reduced mass, m/u.___

For calculation of the rate ¢oefficients & or relaxation times T, the correc-
tion should be evaluated at the collision energy E; given by Eq. (6.62) .

%, l‘_ﬁ_m(g)”a-ﬁ‘z
Ta o ‘» 32u. Ec 1152u

sk

where T, _ 1is thé relaxation time and o4 is the rate coefficient obtained theoreti- :
cally for the adiabatic-like collisions. Similar. results obtain in the case of i
three-dimensional theory, only the expression for v2 - is then somewhat more complex.

(6.187)

- The total correction for both symmetric and asymmetric distortions of the colli- ,
' sion impulse is just the product of two separate corrections. This result is . j
obtained when the Fourier transform is performed on the perturbation potential : ]

u(t) = U, F1 + a(at)?

+ B(at)"“]sech?(at) (6.188) 3r ,
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: energy transiently transferred to the ; |

vibrational mode at the turning point is

] just the coefficient o, which is typi-

4 cally the order of 1%; the permanent

x energy transfer is typically the order

; ‘ of 10%.. Although the amount of tran-

- . sient energy transfer is small, it

3 E causes transition probabilities to _ b
decrease by factors of about 1.5 to 2 :

. : because of the high sensitivity of the
; Fourier transform to the shape of the '
' i impulse function., Figure 6.6 shows the 1 ' : L L = 1
E T ratio 71/ta given by Eq. (6.187) for 1000 500 3001-‘ K?oo 100x 10" :
3 ' 02-Ar. and N-N2 collisions where the . N . . . } ¥
3 logarithmic potential gradients are 04 05 06 07 08 . .09 10
T 0.24 and . 0.27 X, respectively. The. 7-1/3 T

cor7§ction is plotted as a function of

=t to. show the departures from .
Landau~Teller theory, as illustrated by Fig::iagégiogoziggg;ggrt§22§2r:§§°32}Ar_

the small curvature that appears at the collision.
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i high temperature end.of the plot. The. effect is alsé shown in the dashed theoretical. .
{ _curve of figure 6.7. The data on this figure are those of Appleton (ref. 29), and
curvature of about .the predicted. magnitude.appears at high temperatures, near
10,000.K.. This is the omnly data presently known at these high temperatures where the
effect 1s observed.

o T, deg K X103 .
. 4120887 6 5 4 3 2 ,
, ' 10 T T 1 1 1 1 ? /’< OR,G'NAL PAGE ',s- }
L OF POOR QUALITY o
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o6 F - N
! O  EXPERIMENT !
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' TEMPERATURE DATA | :
—— ~ THEORY i
10"7 I 1 1
.04 .05 .06 .07 .08
(T, deg K)-1/3
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Figure 6.7- Landau-Teller plot, N»>-N, vibrational relaxation.

6.13 CONCLUDING REMARKS _ O

A large amount of theoretical and experimental research has been invested in.the . 4
vibrational relaxation problem, so much that one.would think the problem would have. ; '
been completely solved by this time. However, a large amount of additional work is. ;
still possible on the problem because of the various approximations and limitationms ’
involved in previous work. We have devoted ourselves mainly to the semiclassical 1
treatment because this method is conducive to the derivation of analytic approxima- 1
tions that lead to better.insight about the meaning of parameters important to the i
problem. In principle, numerical solutions of the coupled set of differential equa-- i

o tions involved can be performed as accurately as desired. In practice, most of these. !
X solutions. have been devoted to one-dimensional collinear collisions because of the |
' exorbitant amount. of. computing time. required for the three~dimensional case... However, . :
the semiclassical results furnish a convenient, though approximate, relation between |
the one~-dimensional and the three-dimensional case which can be applied to the more }
rigorous. one-dimensional calculations. Many of the one-dimensional calculations are. -
stil]l based on the sech(at) type of interaction potential, which 1is rather. approxi- - ! :
mate; others are based on the exponential interaction and the classical equations of ‘ ‘
motion are numerically integrated for this interaction, including the effects of step-

3
X
!

by-step energy conservation. However, the real potentials are unknown, and until A
these are available. from fundamental quantum calculations there is not really much ! :
point in being carried away with long computations of rigorous solutions, The : i
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present semiclassical results are perhaps as accurate as needed considering our state
of knowledge of the interaction potentials. _

Two problems which are of current interest merit comment., One is that transition
between upper vibrational levels is of great concern to-sciéntists analyzing gas-
dynamic¢ lasers. These transitions are reésponsible.for establishing the nonequilibrium
population of excited statés that occur in these lasers, particularly the V-V tran-~
sitions where both.the-os¢illator and its. collision partner change vibrational state.-
This problem requires.that the vibrational wave funétions and transition matrix ele-
ments for the c¢ollision partner be includeéd.. In the upper levels, the anharmonic
effects become stronger and can produce. sizable phase shifts in the probability ampli-
tudes because of theé extreme sensitivity of the Fourier transforms to phase, Finally,
after all these consideritions, we must admit that the problem has not even been
solved correctly yet, pecause the effects of coupled rotational transitions. have not
been properly included. We observed how the deéependence of the perturbation potential
on angular coordinates led to coupled vibration-ratation transitions, predominantly
with AL = 0, *2, and %4, when the three-dimensional aspects of the problem were -con~
sidered. However, this analysis was.-only performed in the small perturbation limit,
whereas multiquantum rotational transitions occur in normal collisions. with high
probability and these cannot be treated by small perturbation methods. To be done
correctly, the problem should be performed with every rotation-vibration eigenfunction
avallable to the molecule represented by one equation in the close-coupled set of.
equations discussed in this chapter.. This method becomes.tod large a computation
problem even for modern computers, because of the large number of ‘equations involved
and the three-dimensional characteristié¢s of the problem, What is. needed is a set of
approximate eéxpressions for the rotational transitions preoduced in collision as a
function of "time, which can bé coupled into the equations for vibrational transition
as a reasonably fast subroutine.

The physical picture we have of the collision process and the elements necessary
for the solution of transition probabilities are quite clear at this. point, however.
The diatomic molecule starts in a known vibration-rotation state. Given the interac-
tion potential with an incoming collision partner, the eigenfunction is first dis-
torted to include a .number of unperturbed rotational elgenfunctions in the expansion;
the coefficients of these eigenfunctions. squared being the time-dependent probabili-
ties that the molecule would be found in thesé rotational states 1f the perturbation
were suddenly removed. From these rotational states, the transitions to the nearby
vibrational levels take place with much smaller probability. Under the influence 6f
the perturbation, the transient internal énergy surges back and forth between the
various rotation~vibration states, certain states on occasion being at maximum while ...
others are at nodal points. As the perturbation recedes, some of this internal
energy flows back into the kinetic-énergy mode, leaving the molecule with a distribu-
tion of probabilities, smaller than at the peak of interaction, among the various
unperturbed vibration-rotation ste..es. The transitions to other vibrational states.
will generally occur as given by small perturbation theory, but the rotational ampli-
tudes will wander around the laddér of available states both in the initial vibra- -
tional state before transition amplitudeés have changed appreciably to the final state,
and .also in the final vibrational state after the transition amplitudes in these
states have .grown appreciably. Since rotational changes will both climb and descend
the ladder undér the perturbation influence, we are able to get by with the approxi-
mate solutions where the two effécts are decoupléd. However, the strong dependence
of the Fourier transforms on theé value of thé circular frequency w suggests that the
most frequent.path of transition will be where w 15 minimized; nameély, where the
rotational state is démoted to lower levels in the transition proceéss, though it may

e e

subsequeéntly be promotéd to a distribution of rotational levels in the upper statg.wmm”.Awuwiuwwm“
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This wandering around in the various. rotational states during the impulse should be .
particularly noticed {n the V=V  type transitions important in laser gasdynamics.
Thus, the full solution to. the collision induced vibrational transition problem awaits
the solution to the collisfon induced rotational transition problem, a solution that
has.not yet been satisfactorily aécomplished.
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VIBRATION-ROTATION TRANSITION OVERLAP INTEGRALS

The overlap integrals vy (Eq. (6.90)) are evaluated using rigid-rotator, harmonic
oscillator wavefunctions

v Zm(p.'.e’¢) it Yzm(em)wv(p'- pe) _ (6.A1)

where Y, 1s the normalized harmonic-oscillator. wave function and ng is the usual
spherical harmonic function. .Then. y may be expressed

Y(V,2,mjv + Av,L + AfL,m + Am) = Il(Av)Iz(Ak.Am) (6.A2)
where
® o -
L (av) = ;fr%li—g J- w\,;-mv -p_-ﬂ:s'va de (6.43)
o

= * 2 2 _6_2_ L L
I,(A%2,Am) fYHAl,m-i-Am(Sin 6 cos® ¢ +m 651:1 8.cos ¢)Y9,m §Q .. (6.A4)

The integration of (6.A4) extends over all elements of the solid angle dQ.

The integral I, is easily found by usual methods, and it is nonzero only where
Av = #]1

1/2

(£1) = =& vtits )
I.(z1) = (6.AS
1 sinh § 8qu2/h,

An elegant way to. evaluate I, is to expand the perturbation in terms of spheri-
cgl-harmonic.funCtions. Then I, 1is the sum of integrals of triple products
YormtYouguYs which are given in terms of Clebsch-Gordon coefficients (ref. 30).
However, we will sketch the derivation in.terms of commonly known relations between
the associated Legendre functions.

I, can be expressed

¢ CQ' = i(m-m*)¢ 2 " m', . ..m 3 )
I, = 7 J‘ e 7 cos® ¢ d¢ J. Pz,(cos e)Pz(cos 8)sin® ¢ dé
(] o
27 m
+ %2- J. elm-m')e o ¢ dé j Px‘z:(coS 611’.‘2((‘.03 8)sin® o de (6.A6)
() 0
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(6.A7)

' _
and C%, are th2 usual normallizing constants

m (2 + 1@ - w12
o '[ —2(AFmyL ] -

m
where Cz

and m 1is understood here to represent the absolute magnitude of the magnetic quan-
tum number..

Ultimately, we are interested in the limiting values of I, when 2 >> 1, and . & §
it simplifies the algebra enormously if we use limiting forms for the recursion rela- ———-
tions between associlated Legendre functions right from tiie beginning, rather than use
the exact. recursion relations and then take the limit at the end. The results are-the
same in either case. The limiting recursion relations are

m 1 m m
xPz(x) WT[ [(2 - m)P“_l(x) + (2 + m)PR_l‘(x)] (6.A8).
. e2y1/2p0 1T 2 o=~1 _ _ y2pm-l
=R — e rwiw - a -] e
- x2y1/2pM 1 |pm+r _ il
; t
When. these are used with the orthogonality relation h 3
: 2. §’ |
: i
J' [P} (%) 12dx = <L> (6.411)
, m : i
C 3 i
the integrals I, (A%, 4m) become ? 1
1 22 +m? | 6% 38% + 22%m® + 3t :
1,(0,0) ey + 138 PO (6.412) ¥
1 22 - m2 8% g% - m* ¥
I,(0,¥2) = - = -— . 6.A13) .
- 362 (2'2 - m2)2
12(0’24) - 7.68 . 2“ (6.A14) 4
2 _ .2 2.,4 _ _4 .
12(_2,0) = -%&%._%LTL (6.A15) 1
22 A i
22‘ 52 2002 _ 2
1,(2,22) = g % et m)..u“ mrn) (6.A16) |
sy o L (2 -m? 8% (2~ m2(2 + tm + m?) | .
I,(22,72) T€ng—,* - e - (6.A17) _ __ 3 i
2 2002 _ .2 \ ¥
1(22,84) = - gy AL -0 ) (6.418) }g
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I,(82,54) = - Ao L “‘)1(,,"2__“' n’) (6.A19)
o ' ;
SB‘%‘(\)!Q:R STJC;\{“!Y I,(24,0) = %%g—i—-—l- L ;;{“2 - (6.420)
I,(%4,2) = - 55;4 (2 “‘lz’ﬁ‘a = n%) (6.A21)
1, (24,52) = - oo & m)zz(fvz = n%) (6.422)
I,(24,84) = oz & :,;?“)“ (taAza)T

For all other values of AL and Am, I, vanishes, so the selection rules for the
assumed perturbation are AL = 0, *2, #4; Am = 0, %2, *4. Next, the I2 (A% Am) are
averaged over all 2% + 1 initial values of m to get the total value (Az) for a
given change in angular momentum,

15(8) =57 +1 ZZ 12(A%,0m) (6.A425)

m Am

Recall that m signifies here the absolute value of magnetic quantum number, but
there are 2% + 1 terms. To terms of first order in &, the average value of m® is

<m ) g (6.A26)

2>>1 n+1

and the averages given by Eq. (6.A25) become

2,8,

2 =
1,00 =75+ 35 * 530 (6.427)
2 _1 8% o2t
12(x2) = 35+ 155 * 7835 (6.428).
2 s*
IZ(:A) = 22680 (6.A29)

If the next~order term in the expansion of the perturbation had been included in
Eq. (6.85) it would contribute nothing to terms of order 6% and 6% 1in the integrals
I,; it would increase the terms of order &%, but by less than a fa¢tor of 2. For.
realistic values of &% (<6), the major contribution comes from the terms of order
82 'and lower, and we conclude that for real molecules. the dominant rotational changes
coupled to the vibrational transitions are AR = 0,_ =2,

The matric elementa 72 have been evaluated here for. rigid-rotator wavefunctions,
while symmetric-top wavefunctions should be used, strictly speaking, for diatomic
molecules with electronic states other than *F. However, the projection of electron
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spin and orbital momenta along the internuclear axis is rarely more than 3/2 quantum
units in molecules of interest, so at high rotational quantum numbers 2, the coupling
of electronic momenta perturbs the rigid-rotator wavefunctions. only a small amount,
Accordingly, we apply the above.matrix elements to diatomic molecules in general,
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COLLISION PERTURBATION FOURIER TRANSFORMS.

-
2

T TR Tm——
i
H

The Fouriler transform used when nonadiabatic collision effects are consildered is

[+ 1] i .

F -wf sechz(at.)e(iw+b)tdt (6.B1) :
-l . i .\ 1
E A contour integration about the pole at t = iw/2a, along the real axis t =-x from f, i
‘ -® to +° and back along t = x + im/a, yields : i
i
(1 - WTe/m(mla)) E | gy peg (41) 6.52) .

The residue at in/2a is

Res (_;_'n.) . .b+ 1w e(i'nb/Za)-(nw/.Za) (6.B3)
a a2

and the dimensionless Fourier transform is thus ; 3

RS Eichaaic s it uaiEie DAL Sl SR L © i 4 A it s i ok ot duiadd

W mw = iub
F = (; Fw - ib)esch (-——-—2-5—-—-) (6.84)
: In the limit (w/a) >> 1, the modulus squared of this transform becomes
| v 2
|72 = 4 (2) ™21+ 2y (6.B5)
l a wz ‘

The factor (1 + b2/w?) represents the corréction to the usual adiabatic¢ collision
) transition probability due to the asymmetrical factor ePt in the impulse function.
" In addition, transforms of the type !

F=uw f [1 + a(at)? + B(at)"]sech? at olutye (6.B6)
-

are required for analysis of nonadiabatic-elastic collisions invelving interactions
between the vibrational and kinetic-energy modes. Define the function. ¥y

iwt

xn
Fn-f t" sech?(at)e “tdt (6.B7)
=

where n .is an integer. Again, perform thé same contour integration along t = x
and back.along t = x + imn/a:

I . maexs T

-0

* n dex - n iwx=(nmw/a)
x & o= > dx 4 J. (x + in/i) & dx = 2mi Res, (6.B8)
cosh” ax cosh“(ax + iw). n

-0

134 !




Aol - desteiia Steolmthts oo RSN~ o S-SR e S et e ke = et - o
'

o LT e e A R

From Eq. (6.B8) _we obtain

! F(l - e-'nw/a) + e-'nw/a-h i F + 1 n{n --1 ﬂ)aF + = 274 Res
i n . ‘a ‘n=1 2 "\ a ] "n=2 o n
| (6.89)
I+ where Resy 1s the residue of tPsech? (at)e** at in/2a,
: n-i. -mw/2a .
:‘ a (Tu. im\ e
; Resn (Za + n) (Za) v (6.B10).
} In the limit as (w/a) >> 1, S
:
. n
: P i(.’i_“.) (.gﬂ)e_‘“w/aa- (6.B11)
! n (w/a)>>1. a\2a a .
and the total Fourier transform given by Eq. (6.B6) then becomes ..
2 2 4
; P 2n(8) /221 - T2+ LF) (6.812)
(w/a)>>1 ar. .

The square of the last .term in brackets represents the correction to the usual.-
adiabatic-elastic ¢ollision transition probability, required when the energy tran-
siently stored in the vibrational modes is included in the conserved collision energy.

OH’{G!’NA,
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VIBRATIONAL ENERGY AND ITS DERIVATIVES AT THE COLLISION TURNING POINT-

Consider a diatomic molecule subject to the perturbation

U=U, + (grad V), vy . (6.C1)

where y = (p = pq ), the oscillator coordinate. The amplitude y of a.classical
oscillator. subject to this perturbation is found using Green's function. Starting
from rest, y at any time t 1is

J-t (grad U), sin w(t - £)
y =

Hw a

The maximum amplitude Y may thus be expressed as __

t
(grad U)
Y = “- —Tu—-—eeiwtdt (6.C2)

-0
The net amount of vibrational energy excited 1s, in units of hw

t 2

242
~LE _pw¥T L J‘ (grad U)_ e™Fdt (6.C3)

hw 2hw 2uhw

This classical result is exactly the same as the quantum probability of transi-
tion O <> 1 given by small perturbation theory,

2
t
1 1wt
e =P, -ﬁ-J‘ Ho1 e dt (6.C4)
-0
where H,, 1s the harmonic oscillator matrix element
1/2
- * = ..L_ 4
Hyy (wllvlwo) - (_Zuw) (grad U), (6.C5)

When the transition probability becomes too large for small perturbation methods to.
apply, Kerner's solutions of Schroedinger's equation are used. The probability of
transition m + n due to a forcing function acting on a harmonic oscillator is
found to be

=& _ntm

e

= > 2 4.
Pmn o m!nlsmn(e) (6.C6)
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where the polynomial S . is Al
OE POOR QUALITY.
= 1,73
: (-1)Y¢
*wl® = 2, GG 6.¢7)
=0 .

For present purposes, transitions from the ground state are of interest:

en. e-e .
=

Pon o (6.C8)

Note that P,, reduces to the usual small perturbation result (Eq. (6.C4)) when. ¢ .

is small. Also the sum of all Pon 1s unity as it should be. The total energy in
all vibrational modes is

© -

®
n
- [
v hw E nPon = hw e Z-(_IT_-—T)_! = hue (6.C9)
n=0 n=1

Where the interaction

potential is exponential, and the molecule is homonuclear, so
that m; = 2y

grad U = -;J—L _
and Eq. (6.C9) can be expressed as
v(t) Yo1 : iwt 2
€= e = | f U (t)e ™ mde (6.C10)
-

which 1s the result used in Eq. (6.1€9),

Hereafter, we shall drop the subscripts on
Yy and U for convenience.

The vibrational energy at t = 0 4is

2 2
(o] (o]

2
V° =-Y-h~‘£ J' U cos wt dt} + J' U sin wt dt (6.Cl11)

-0

The first integral on the right is negligibly small compared with the second. The
latter can be treated by repeated integration by parts to give

(o]

» U, bt (d*usde®)
w w? ® |
o (6.C12)
U.
~ - 2
(]
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where we have used the fact that .U and all its derivatives vanish at__|t| = =,
Thus, to terms of first order in w™?,

2772
YU,

=
o ~hw

v - (6.C13)

The derivatives of V at t = 0 are obtalned.by differentiation of Eq. (6.Cl0).
The cosine transform of U and all odd derivatives of U at t = 0 are taken to
vanish,

o
U cos wt dt = Uo a(~—=] =0 (6.C14)
de®
-0 o
which is equivalent. to neglect .of asymmetrical terms in U and V. Then the results
are:
2 3
vo= (L) - 9—.‘1) - 6.C15
° at”/, dt? o] ° ”nf ?
4 2

<_._d Z) = T8y g, (6.C16)

The vibrational energy at the turning point is seen to vary essentially at t*.
These results are valid for any impulse function U(t) where the duration of impulse
is long compared with ™%, provided only that U varies exponentially with distance
between the collision partners. Similar relations obtain in the more general case,
only U 4is then replaced by (2L grad U).
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CHAPTER VII COLLISION-INDUCED ROTATIONAL EXCITATION

7.1 SUMMARY.. - ORIGyN,
oF poé','; P AGE IS

The close-coupled set of equations that describe rotational excitation Ly colli-

sion perturbation are the.same as used previously to describe vibrational excitation. .

However, in this case the small perturbation methods fail and a large number of
accessible states lie within kT of one another so that reaction. paths from initial
state n to final state J can go through a multiplicity of intermediate states,
suchas n+k~»>%+m~ .., .+ 3. This renders even high~speed computer solutions.
very costly except at very low temperatures, where somewhat fewer levels need to be
included in the coupled set.. Nevertheless, a few steps in the problem can be carried
forward analytically to give some.physical insight into the character of the solu-
tions. In particular, the sudden approximation is useful wherever the collision time
is very short compared with the transition time w™!, and a series expansion of the
solution is.then possible in analytic form. Such solutions are illustrated.by carry-
ing out the integrals for cross section and rate coefficient for first- and second-...
order terms, but recognizing that additional .terms, which greatly increase the com=
plexity, must be included for convergence to the correct answer for most cases of’
practical importance. Some numerical integrations of the close-coupled set of rota-
tional .transition equations are given, using a severely truncated form of the. inter-
action potential, to show the character of the precise solutions that can be provided,
in principle, by high-speed computers. The effort to perform the precise solutions

will be warranted once quantum chemistry methods have provided realistic interaction
potentials.

7.2 INTRODUCTION

Collision-induced rotatiénal transitions are important for a number of reasons..
As we saw in_the last chapter, rotational transitions are needed for-a complete
solution.of the vibrational excitation problem; they are important in establishing
population inversions in molecular gas lasers; they affect ultrasonic absorption and
dispersion, transport properties of gases, and the shifting and broadening of spectral
lines; and in astrophysics they contribute to the cooling of interstellar gas and
possible maser action in such gas. The complete formalism for the equations which
need to be solved has been.laid out by Takayanagl more than a decade.ago; his two
review articles on the theory of rotational and vibrational transitions in molecular.
collisions (refs. 1 and 2) are still current. Unfortunately, the formalism has.been
of little help to engineers who needed quantitative estimates of the transition rates,
becausé.small perturbation methods which lead to analytic expressions are inaccurate,.
and the more exact solutions by numerical methods required excessive computing time.
Takayanagli and others have studied approximate methods such as the Distorted Wave .
method (ref. 3) and the Modified Wave Number method (refs. 1 and 2), but the only
method which seems capable of good accuracy is the close-coupling method which is a. .
direct numerical solution of the set of Eqs. (6.28) derived in the last chapter.
These equations are truncated at a finite number of rotational states, which may need
to be.much larger than.the number of rotational states finally excited by the colli-
sionn. The collision energy may be-transiently stored in some of the high-lying rota-
tional statés during the course of the collision, just as in the upper vibrational.
states as discussed in the last chapter, and the set of equations must include all the
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P states which are excited to an appreciable extent during the collision., This method
required so much_computer time that only a few simple calculations have heen performed
until recently. Takayanagi (ref. 4) studied the rotatiounal relaxation in HD-HD colli-
sions at low temperature. (20 to 40 K) where only the J = 0 and 1 levels needed to be
considered; he caléulated .the number of c¢ollisions Z needed to relax the gas to
equilibrium and found Z = 25 at 20 K and Z =19 at 40 K; this result is within a
factor of about 2 compared with experimental results, Z = 10, from sound absorption
measurements by Prangsma et al. (ref., 5), Itikawa and Takayanagi (ref. 6) obtained
better agreement for HD-He collisions, but the interaction potentials used are rather.
uncertain, so the agreement may be somewhat fortuitous. Three major factors have '
limited the enthusiasm.for performing extensive calculations of rotational excitation i
(1) the excessive computer time required, (2) the lack of accurate knowledge about §
interaction potentials, and (3) the.lack of accurate experimental data with which to !
validate the calculations., With respect .to the latter, rotational excitation cannot .
be observed directly with molecular beam methods.because the beam densities are far !
too low for any kind of spectroscopic emission or absorption measurement, even with.
laser light sources.. However, one type of beam measurement can be made quite accu~- - i
{
f

R R VR URE . T A LT e Pt

rately, the excitation of rotation. by electron impact.. The electron scattering and
energy are measured, and the specific rotational state excited is deduced from conser--
vation of energy. For this reason, the most work is currently being done on electron
impact_excitation of rotations, both experimentally and theoretically.

Ia view of the embryonic state of the problem at present, we will discuss only a !
few specific numerical results, but first we will examine the nature of the close- é
coupled set.of equations which need to be solved, in order to learn something about K
the general form their solution must take. . Some of the recent numerical work follows.
the complete. quantum formalism .laid out by Takayanagi in which the incoming particle
is treated as. a sum of .partial waves, each wave representing one unit of angular..
moméntum.with respect to the. relative motion.between the two collision partners. The.
problem with this approach is that several hundreds of these.partial-waves may need.
to be included beforé the solution converges to the correct value of the cross sec-
tion., 1In other words, thé cross sections are large enough so that for heavy particles
and realistic collision velocities a very large number of quantum angular momentum s
: units is involved at the larger miss distances. . The problem is not as severe for the i
' light-weight electrons, of course, which is why calculations involving these collision .
partners are more tractable. For present purposes, we will limit ourselves.to the ' !
semiclassical model for c¢onceptual simplification, and. withhold remarks about .the full !
quantum approach until chapter X, where the.scattering of these.partial waves will be
discussed.

7.3 SEMICLASSICAL CLOSE-COUPLING METHOD

The coupled set of equations which describe rotational excitation by collision
pérturbation aré just thé same-set derived in the last chapter to describe vibrational
transitions by perturbation (Eq. 6.28)

y =i -
ak = - ﬁ 2 anUnk ’ _k 1. 2’ LI T ) L - (7’1)
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’ - 1 (wp=wg)t. ;
’ Unk <Yk|§{'l¥n>e (7.2)

( where Yy and Y, are the elgenfunctions of states k and n with energy eigenvalues

' hwy and hw,, respectively, and H' is the time-dependent collision perturbation

i potential. For.the rotational.problem of interest here, the eigenfunctions. Y will -
be taken as the rigid-rotator, spherical-harmonic wave functions . Y%k. where %y and

? My 4are, respectively, the quantum numbers._giving the angular momentum of -the rotator
and its projection on the =z .axis for the state k in units of.._h,

The quantity H' in the semiclassical model_is the time~deépendent. perturbation .

, determined by the classical collision trajectory. This is a reasonably good approxi-

oo mation if the colliding particles are massive enough to have, at the velocities of

S interest, a quantum wavelength short compared with the distance of appreciable poten~.

‘ tial change. This condition.is typically satisfied for molecular ¢ollisions of "

; interest, except for electron collisions which need to be .treated by a full quantum

: treatment; that. is, the translational wave function must then be.included as part of .
the interaction matrix elements. The main problem with the semiclassical method is
that it is awkward to allow. for conservation of angular momentum.and total energy
during the collision event, though this can be done approximately by the expansions

3 about the point. of closest_approach as for the vibrational transitions considered in ; ]
; s chapter VI. . 3

A AN S T A v e
P Py pranery

The square.of the amplitudes ay represent the probability that at .any time t

the system will be represented by the steady state eigenfunétion Yy with .energy 1
hug, 1f the perturbation were to be removed at that time. The system starts out.with .
unit probability in some initial state, and a characteristic of the solutions to :
Eq. (7.2) is that total probability is conserved

¥
L !

ata, =1 (7.3) {
= k%k % |

g{
The equations are truncated at some total number. of statées L, which might represent i i
the total number of vibrational-rotational levels up to the dissociation limit in a. : g

complete.solution, for example. 1In practical terms, the number of levels is usually

4

: truncated at the number which are appreciably excited during the course of the colli-
: ‘ sion event, in order to reduce the computation time required. At very low tempera-~- -
o tures, where the collisions are very low energy, a two level approximation may provide
L reasonably good answers; the two .level approximation was used by Takayanagi (ref. 4)

E and Itikawa and Takayanagi (ref. 6) to calculate rotational excitation of HD at gas
A temperatures.from 20 K to 40 K, for.example. At higher températurés, it may prove

necessary to include the order of a hundred levels of a typical rotational excitation
problem,

The general charaéter of the solutions can be appréciatéd from inspection of
Kerner's solution for large perturbation vibrational transitions of harmonic¢ oscilla-
tors. .(chapter VI). These analytic¢ solutions are the samé. as obtained from numerical .
golutions of the coupled set of equations. The imaginary coefficients in .the differ-. .—
ential. equations, (7.1), establishes a 90° phase charge between the amplitude compo~
nents &, and the_time.derivatives..ék, which in turn assures the conservation of : |
probability, Eq. (7.3), and results in components of the probability vector which.. . . .
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‘ exhibit maxima and nodes as a function of time (see figs., 6.5(a=¢))..
i_ ties are, in effect, surging back and forth between the various available levels
' during the course of the perturbation event, and the final distributionm of the -
probability among the steady-state levels is highly dependent on the duration of the
perturbation as well as its magnitude. Of course, Kerner's solutions apply only to a
harmonic oscillator.case where the perturbation is linear in the oscillator coordi-
nate, but the general character of the solutions will be the same for any set of
levels and any time-dependent perturbation function. This is well illustrated in the
two-level approximation, where analytic solutions are possible.

The probabili-

4 7.4 TWO-LEVEL APPROXIMATION

Ei , In the two-level approximation, the coupled set ¢f equations reduce to
8, = ~1v(t)(a, + U 240" a,) (74)
a, = -1V(t)(U e 9ot 4 4 4,) (7.5)

ORIGINAL PAGE IS
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% w, = (E, = E)/h, V(&) = U, =U,,

5 and

| uv(t) =U,, =U,,

\ Let

bk = a, exp[i f V(t)dt] (7.6)

Since bﬁbk = aﬁak, we may transform the equations to the amplitudes by and solve
for these quantities.

ék = f)k exp[—i fV(t)dt] - a, 1v(t) (7.7)

5 - 131 = -1V(t)Uexp(iu,t)a, exp(i f'V dt) = -iV(t)U exp(iuuot:)b2 (7.8)

132 = ~1V(t)U exp(-:l.wot)a1 gxp(if'v.dt) = -{V(t)U exp(-iwot)bl (7.9)

The solution can be carried forward for arbitrary V(t), but to illustrate the
form of the solution we consider the case wheré the perturbation V(t) is a rectangu-
lar pulse. Differentiate Eqs. (7.8) and (7.9) with respéct to time and let
U%v? = €2, to obtain

(7.10)

(7.11)
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Solutions to these equations are _ OF Pg‘é\k gsﬁElT,Ys
b iwlt
1 e
b, = a2t (7.13) .
where e -
w_ % Yol + 4C2
[} (o}
~w, t Yo +.4CZ .-
0
w, & — 5 . (7.15)
Thus, a geneéral solution for b, and b, 1is
by = e100t/2(x olupt 4 g olupt (7.16) -
% 3
P
3 3
where i
o 2 ‘ g
- Y2 42 e
wp = (2) + C© (7.18) ;
Now to satisfy this initial condition where the rotator is known to be in level 1 1 1
before the start of the impulse at t = 0 % 4

b,(0) =1 =4

W Wy
bl(O) =0 =1 (T + wp)A1 + (-f_ - “’p)Bl (7.
b,(0) =0 = A, +B, (7.
b,(0) = ~iC = -1 (—2- - uup)A2 + (T + wp)B2 (7.
weé require that . .

1 % 1, %
Mmoo Bitaty .

P P

v c

A, =-B, = - o (7.

3By 7.

19) ‘

o e nd il v mk

20)

2l)

22)

23)

24)

145




ORIGINAL PAGE IS
OF POOR QUALITY

The solutions, Eqs. (7.16) and (7.17) can thus be expressed .

iw,
u gluot/2 ) ,
b, =e™° (?oa”e?ﬁ 2wpvsin wpt)» (7.25)
b, = e~ iuot/ 2( L€ gin mpt) (7.26)
“p .

Exercise 7.1: .Show that the two-level solutions ;jiven by Eqs. (7.25) and (7,26) satisfy the couservavton uf
probability

b,bY + b,b% = 1

Two limiting cases will be of interest. If C >> wy, that 1s, the perturbation
is very strong

2 .
W
, l1( o ‘
wp -> C[l.v+ 2<ZC) + . . .] = C . (7.27)
b§ ———— cos? Ct (7.28)
C>>m
o
b2 ——— sin® Ct (7.29)
C>>wo

The rotator surges back and forth with a high frequency C/wv. On the other hand if ”mem_hlﬁwf

C << wgy, that.is, the perturbation is very weak

w 2 . w
o 1 f2C 0
wp -+ 2 [1 +‘7 (:r) + .. ] =3
w_ t w_t
; [e] 2 (o] ~
b — CO8 ) + sin 5 1

2 W, t

2.

o (2 o 2
wo>>C (o} .

In this case the upper state is never very highly populated, but a small amount of
energy flows in and out of this rotational state with the frequency w°/2ﬂ,

Solutions can be carried forward for a general impulse shape; the solutions for
w, and w, then become complex numbers with factors such as (6/C) in.the imaginary
part. In this case the solutions are also damped and thus have-the character of a
damped oscillation between levels., Such. two-level approximations are not very
realistic in most practical situations however, so we need not develop them further
here; our interest in this approximation has been mainly to develop a feeling for the
characteristics of solutions to the set of coupled equations. Next, we will look at.
expressions for these solutions which are series expansions in powers of h~?!
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7.5 SERIES EXPANSIONS OF. SOLUTIONS TO THE CLOSE-COUPLED SET QF EQUATIONS

ln the small perturbation approximation, the value of the coefficient an, where

a4 da the initial state, 1s simply taken to be a constant, ay = 1, All other coeffi~ .

clents ap are taken to vanish in che first approximation. Then, the set of differ~
enticl Eqs. (7.l1) are uncoupled

ék " - %Unk ef(mn.:wlf)t » k' 1., 2. 3. s 0+ 0 (70 30)

for which the solutions are-simply

ORIGINAL PAGE Ig .
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a, =1-% L Upp 46 (7.31a)
s iy Almwot g (7.31b)

i L S |

The total probability is not conserved in this approximation, but does .remain
close to unity if I, defined as the Fourier transform integrals of U,., are all

ey

RN e i

small

t
= f 1 (wp-wg)t ,
I f_w U e t 4t | (7.32a)
2

aa*=1+3“—“ (7.32b)

n°n h2 *

IZ
a af = of (7.32¢)
1
P = Zj: ajat = 1 +—h—2-»; 12, 41 (7.33)

The probability will, however, be conserved if we retain all terms of order h~? in
the expressions for anag. _For conciseness in notation let

- 1(wi=wk)t
Vi = Uy © 3 : (7.34)

The solutions for the coefficients ay may then be expressed exactly

- 0

t . ot
| 1 1 8, () |
fna =-4 Van 9t - & Z;?EY Vo dt e (7.35a) _
k#n “-=
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Now inserting the firat—ordez..approximat:ions in the right-hand side of Eq. (7.35a)

and (7.35b) -

t t tt!-
[ —i-'- “ - ._.. b ‘ . 1 £ ’
4n an h J (t ) de! : { J- vnk (t ' ) I vnk (t")dt"dt + S (_7.36&) .

L R i T e +

(7.35b)

- - k#n
¢
1 Pyt
8 = -1 J- Vnk(t yaet + . L, (7.36b) ﬁ
-0 c}
The double integrals of Eq. (7.36a) are easily evaluated 4
! B
t et £t dInk ‘
" 1] (K t o ty MR ' :
J. f Vnk(t )de Vnk(t )dt J. Ink(t ) dc’ dt
-0 -0 —Q
ST R G5
= = 5 = =7.37)
-0
Then
1 Iy |
1 nk {
k#n ’
12 12 f
1 1 E nk nn 1 i
k#n |
a -=—-j=I + @(—l-)+ (7.38c)
k h k h2 . c—u . A
Now the absolute values of the squares of the coefficients ax are, to order h—?
__ 2 =1 - i ‘
a ok = 1 thI VRGBS B I AR S (7.39a)
k#n
12
nk :
akal’: =T (7.39)
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; ; The probability is thus conserved to order h~2 . g?'%"ovgk gﬁga Tlvs

8

v | . 1 w2 oL r2 - -3

{ Z akaﬁﬁ-li-'ﬁ?z_lnk*'hz Z Ink+' . 1+ Oh™°) (7.40)
E k : kfn kfn

The expansion can of course be continued to higher order_ terms. For example R

-y

t..

t t' .
8 = -%J- Vo, (£1)dt! --,%2-." J' V(£ (£")at" de!
t t!
1 4 t 1" " t -3
-+ E J' J- ij(t )ij(t dat" de' +. 4(h”®) (7.41)
j#n %= e .
%k

t _t!
—_— = _1_ t [} " t -3
a, a + h2 J' J' Vnk(q )Vnn(t")flt ,.flt AL (7.42)

H
S

t t!
t t _L_ L " " t
f Vnn(t )dt vy E .r f Vnk(t )Vnk(t yde" de
- - k*n © Y=o B

£ ¢! £"
s 1 ' 1" " tn 1 H
lv: - +FZ E J. J. f Vnk(t )ij(t: )ij(t' )de'" de dE' +0gh "y

t : k#n j#n "= (7.43)
»

The variables of integration are designated t', t", t'", etc., to call attention ;
to the fact that they are dummy variables and that the true functional variable is : ]
the upper limit of the last integral to be performed. As long as the perturbation ‘
R functions are all the same, the nested integrals may be evaluated exactly by repeated
- application of the result in Eq. (7.37).

t' ty tq ng(t)
J' I ¢ e f Vnk(tq)vnk_(tq_l) ‘e Vnk(tl)dtq dtq__1 e oo dty = ol
-0 -0 -0

(7.44) ‘ 3

o e

‘ ina = =
SN n

— i e e d e B S b

However, where the perturbation functions are different, the general result is not so
simply expressed. An approximation known as the sudden approximation is often used at
this point, where the perturbation is treated as a delta function in time. The
physical interpretation of this approximation is that the impulse duration is very
short compared with the period of transition between.any two steady states, that is

1 : _
(v = w) €<= 7.45

i i
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where 1, 18 the effective duration of the ¢ollision perturbation. This is a reason-
ably good approximation for high-temperature collisions when the adjacent states are
¢lose together, e.g., in high temperature. excitation of - low=lying rotational states.
However, the approximation becomes poorer as the values of Aw become larger, as they
do for upper rotational states where the energy indreases as &£(% + 1) — approximately
the square of the rotational quantum number . &. .

Wherever the sudden approximation is justified, the nested integrals can be
evaluated simply

t t t—
o v . I I
.1 M " o = nl nk . .
J' J. th (tV, (£1)de" de 5 (7.46a)
- o R
¢ fa- LI, « v 1
I O Y I Vl(tl)vz(t2> LI Y vq(tqzitl _dt2 . e » dtq = N ql
- - (7.46b)
Problem 7.2a: Consider the rectangular perturbation tmpulses l-'?"GlNAL PAGE S
T OF POOR QUALITY
nk S . L. < € Cerr i
=0 o]

show that 1f

t

toot! 12
f nk
J. f vnk(l')vhk(t")dtl dt' " -T
- -

Problem 7.2b: Conslder rectangular. porturbation fmpulses such .that

the nested futegral s glven by -

V.=V , vV

ny o "W

ki o’ lel «
-0 , -0 , e <[]
show that {f wé define the single {ntegral

t
ljk(t) - f_,‘, v‘k(‘-')dl'

the double. fntegral {a.givén by

t ot

1.1
J. f \'“j(t.')ka.(t.")dt" dt' = 4‘42&

CU TR ANY)

150

e M e B e e A e et o 1

ot




a8
i Problem 7,3 - Consider a.tviple-neated.integral of rvectangular functions vy(t) with differont half widths ey and
g i different hatghts Vi,
= -
b ttoth
| v (t )V “u)v (Llll)dtﬂl aL" dy
: - Lu I b
r L whare .
. Vi) = Wy, e sy OFRIC,NAL PAGK IS
| - POOR QuaLry
L =0 v < e
:‘f {,; V() = v, le] < ¢,
; ! =0 L, <] ' \
3 velt) =¥y, It AL
- co ekl
1 show that as t becomes greater than the largest half width, the nested integral may be expressed ,
VioVaoVso2'e ey I1,1, ‘l
3 or A .
whére
: %
1, -f v, (e")de! i
|
] Using the sudden approximation to evaluate the nested integrals, one obtains the l‘ :
8 expansions § 1
- }
ST AT 35
: a ==+l -~ I.I ., +— I ‘
j#n h "nj  2p2 i nk'kj g3 n ak kel 2] ;
; !
B -5 i E
- 24n aklkelonlng * o0 0 OWTN o (7.47) 3
¥ 1 1 1 4'
NPTUFREE RS )
- n b Lan 2h2 nk  gp3 X 3 TokTkelon f
!Z : .
\ -5 | ‘
t» ' Now evaluate the absolute squares of these coefficients to order h~*
i , 4
I
ST ) Ly
ajaj ( M o’ Inka!lIQ,j + an - Inkaj + .. :
) h Tt 2 z TokTie! 9~J nj 2 Z InkajInQIRj ?
{
toe oo OMTSY (7.49)
)
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=1 - Flf Iij + ot Z E 2,_1?:]1:“‘1““12n Lif*_ E Z.—»Iiklﬁn

e 128§ T k.2

'i.- __4 v -6

E — Zk: . Tl Tanlon ¥+ v ¢ 007 (7.50)
r:

3 Now sum over all aja?

ﬁ- a,a* = 2 g ' 1.1 .I..1

L Z 373 n2 nj 120" Z Z Z nk k823 nj _

3 j#n jfn k2

E.'

: 3 -6

3 —_— . L e .51
’f ¥ Ton® j%‘ ; ; Taktegtaatey * v e 0 OO 7510~

The terms of order- h=2 1in anag and faial obviously add up to zero as before.
With a.little rearrangement of the indices of summation (which are dummy indices) the
terms of order h~* are found to cancel as well. For.example,

2 Zk: ; TklisTnateg =322k: 4\;4 Lnstytkelen (7.52)

. 3

% Thus,

j;n Zk: < Loy Tnatey * ? ;‘Iflklfw = ; ; ; IoTydilen (7059
) j% ; ; 'InkaQIt’LJVInJ B zk: ; .InkaRIQnInn = - ; Xk: ZQ Indjkazlzn,

(7.54)

where the summations eéxtend over all levels including the initial level subscript n,
unless indicated otherwise. The higher-order terms will also cancel when the expan-
sions are carried further, and probability is thus.conserved.to each order of
approximation.

{; aal=1 (7.55)

152

T T TR T T e ¥ W O b ey o RV M 'vv——"-'m"“x"'—vt:’"'"'\'—"?w"" CRYTTATTTRT— A4




;‘ Conservation of probability does not prove the accuracy of the separate transition
1% probabilities, of course; one must carry the expansion to the point where it con=
‘- verges in.each case of interest. In cases where the sudden approximation is mot.
! reliable, one would need to .evaluate multiple integrals instead of the simple product

of single integrals (see Eq. (7.460)).

i Problem 7.4: Derive the expanalons for

;
[
F
]
b
g |
‘ ay and a, sgiven by Eqa. (7.47) and (7.48). A relatively diredét method is to
E use suéressive approximation in the exact telationa of Eqs. (7.35a) and (7.35b)2

d

‘l 7.6 CALCULATION OF ROTATIONAL TRANSITIONS WITH THE SUDDEN APPROXIMATION

L puters usually are performed by direct numerical.integration of the coupled set of

X equations (7.1).. This may consume excessive amounts of computer.time when a large
number of equations<need to be included, as they do when a large number of coeffi-
cients a4 transiently take on sizable values during the course of.a collision event.
This occurs whenever a large number .of energy states are accessible with energy
spacing less than kT, which is the case for the typical rotation excitation problem.
However, one can also proceed to use a computer ‘to evaluate expansions such as

Eqs. (7.47) and (7.48). These éxpansions can be expressed in terms of nested multiple
integrals Eq. (7.46), and in principle, these integrals. could be evaluated numerically
with a computer without resorting to the sudden approximation. . However, the amount of
computer time required to evaluate such multiple integrals is hopelessly excessive,
and the expansion-type solutions are, therefore, always evaluated using the sudden

approximation.

Stallcop (ref. 7) carriles forward the.sudden approximation expansions to an
analytic result for the cross sections for transition from rotational state i to i',.
using a linear-trajectory approximation for the classical interaction impulse. The
linear~trajectory approximation is rather reasonable because the rotational transi-.
tions are promoted more effectively by the large number of “weak interaction colli-

g ' sions, with large impact parameter b, where the trajectory is reasonably linear,

8 than by the much smaller number of strong interaction collisions with small impact
parameter b, where the trajectory is strongly deflected. Stallcop (ref. 7) also

. shows that the sudden approximation is justified for collision velocities the order

g of 10° cm/sec and rotational temperaturés the order of 300 K for typical diatomic

A molecules and appropriate interaction potentiels. The analytic expressions are

rather complex, but the method of approach is straightforward and may. be summarized as

follows: A

L The first and. key step is to express the collision interaction potential as a. .
» series expansion of terms that are separable in the collision variables (miss dis-

: tance. b, collision velocity u, and time t) and the molecular axis angular coordi-
nates (6 and ¢). Stallcop (ref. 8) shows that the total transition probability
cannot depend on the coordinate system chosen, a fact. that corresponds with our
natural intuition. We will choose collision ¢oordinates as shown in figure 6.3, but
other choices are certainly permissible; the ¢hoice should be made. to simplify the
solution as far as possible. The interaction.potential may, after some manipulation,

be. expressed in the .form
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L
U(6,6,b,u,t) = ; Z uLM(b'u't)YLM(e"‘¢) (7.56)
- M=-L

f

l where Yyym(6,4) is the normalized spherical harmonic function, and upy(b,u,t) is the

j coefficient for each term in the summation over the various angular momentum values

: ( L and their projections M on the designated polar axis direction. For rigid

F rotator wave functions Yy, and Yji,+, corresponding to a transition from state Aim
to state 2'm', the integrals of Eq. (7.32a), which are factors in the temms of the

ﬁ sudden approximation expansion, are given by

Ilgﬁzvmv (b’u), = <¥9,m(e’¢)YLM(e’¢)Y£'m'(e’¢)> f umgbtuot)eimlz't dt  (7.57)

@K
-0
The first factor is the so-called Wigner-3j coefficient or more commonly the Clebsch-=

Gordon coefficient, an integral average over all coordinates of three spherical
harmonic functions

LM 22'L ;
szk'm'.ff(mm'M)A-_ <Yzm¥LMYg'm:>' (7.58)

These coefficients are rather complex expressions of the indices &,m,2',m',L, and M

CLM = [(L + 2 = AL - 2+ AN+ A - LI+ ML - ML + 1)]1/2.'
me'm' CT+L+ 0 FDIE -~ +mIR ~n )2 +m )l

- k+2'+m' (L+2' +m -k -m+k)!
x 2 1) T-1+0 ~OITL+H - IRk * &= 1T - mr 39
k .

' These are derived by Wigner (ref. 9), they are discussed by Landau and Lifshitz

- (ref.. 10) and by most advanced quantum texts, and they have been tabulated for a .
number of values of. %,%'-and L . by Edmonds. (ref. 11). The second expression of

Eq. (7.58) is the notation used.by Edmonds. The summation.over the integers k in.
Eq. (7.59) is a summation over values from &' - 2 + M or 0, whichever is greater, to
L+M or L - 2.+ &', whichever is smaller. The coefficients are very symmetrical,
though as Landau and Lifshitz (ref. 10) point out, this is difficult to recognize
because one cannot explicitly calculate the.sum in Eq. (7.59). One can see at once
that M = -(m; + m;) is one requirement for a finite coefficient, so only those terms
in the .expansion need be retained for a .given transition. .

0 SR A I

oAt

The second term on the right.side of..Eq. (7.57) 1s just the Fourier transform of
the expansion coefficient ..upy

]

! - lwggrt..
FLM (b,u) J:w uLM(b,u,t)eA._ dt ORIGINAL PAGE IS. (7.60)

OF POOR QUALITY

where the circular frequency wysr. 1is o —

wpgr = [RT(RT +1) - 22+ 1)) A (7.61)
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Note that 1f this transform varies appreciably from the simple integral over the

impulse
ORIGINAL . PAGE IS. .
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]
Fﬁ; () > B u@p,u.t)d: (7.60a)

then the sudden approximation is beginning to deterlorate for the calculation of that
particular transition. In other words, the impulse time which determines the width
inltime of .the coefficient. upy must be .short compared with the inverse frequency

wzz‘ [}

T ™= _—_—"um(bl,u..o_)_f um(b,u,t)dt << wZ;' (7.62) &

Note that the integrals have been performed over all time from -« to +=, since we
are mainly interested in the final result after the collision event is completed.. If
one is interested in the time variation of the perturbed wave function during the
collision, then the upper limits of these.integrals are all taken as t, of course.

At this point, the elements of the sudden approximation integrals have been
determined as.a product of a numerical Clebsch-Gordon coefficient and a Fourier trans- i
form which is a function of miss distance b. and collision velocity u . 1

LM LM A (7.63)

Izml'm'(b’u) = Cﬁml'm'FLM ;

The total integral of Eq. (7.32a) is, of course, the sum over all terms in the expan- ,
sion of the interaction potential, Eq. (7.56) a

M
Ly grg (Bow) = ZL: %; It | (7.64)
Once the coefficients ay o+, are calculated with the results above inserted into
Eqs. (7.47) and (7.48), tge transition probabilities are simply
- *
szk'm'(b’u) 8 omi'm' #ome ' m! B (7.65)
Usually, one is interested only in the total transition probability from a given }

rotational level & to enother level &'. In this case we may sum over all initial . .
values of the quantum number m, giving each of them equal weight in the collision
event, and also sum over all final values of m'.

Fvndicsied. . bk

NN R ed

ot i, "

1 \
Py = T ; ;lel'm' (7.66) .. . . ...

To. recapitulate some of the previous results in chapter .II on collision cross
section S(u) and rate coefficient o(T), thesé are given by the integrals

S(u) = f P(b,u)2nb db (1.67)
(o]
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7.7 ILLUSTRATION OF .CALCULATION METHODS USING EXPONENTIAL INTERACTION POTENTIAL

To.illustrate the calculation procedures and to provide some approximate expec-
tations about the rotational transition probabilities, we may use the same potential
derived for the vibrational transition calculations-in.chapter VI, Eq. (6.83).
Figure 6.4 defines the coordinate system used. The molecule is_treated as a rigid
rotator in this case so that terms in y - y, vanish,

U=1U, e-(n-o/L)[gq§pﬂ§M§in 8 cos ¢) + X8 sin 6 sin ¢ sinh(8 sin 6 cos ¢) + . . .]
(7.69) .
Where r and x are functions of t, 0. is the distance of closest approach, L is

the characteristic scale length of the exponential interaction, and & 1is ye/2L, a
constant that is the order of unity. Expanding to térms of first order -

U=, e.(r d/L)[l + %r_§1n2 8 cos® ¢ + x(t)s2 sin? 86 cos ¢ sin ¢ + . . J (7.70)_

As.in chapter VI, we expand about the turning point at t = 0 and fit the first and
second derivatives that obtain there

e—(r-a/L) = gsech? at (7.71)
where
r. 2
2 o . fu. - - -.2L
a =“2‘E‘(2L) [1 e e)(l O)] (7.72)
2U0
€ = —— - (7.73)._
mu
and
u_t. ,
x(£) = ——= %1 - &)1/ 2 (7.74)

The first term in .the perturbation potential of. Eq. (7.70) will produce only ela:tic.
scattering, no rotational transitions. The second térm will produce finite matrix
elements only. for transitions. &''= ¢, ¢ +2 and m' =m, m t 2; where %' and m'
are the final quantum numbers. The third térm will produce the same transitions in
2 and m except that m' = m. results in a vanishing matrix element. The evaluation
of the averuges over the angular coordinates, which result in these selection rules,

P
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Comprmt = (Yyn(810) [a1n? 6 cos® ¢[¥,. (6,00 (7.75)

[

Domgrat = (Ygn(@r#) |ain® o cos ¢ sin ¢[¥,, 1 (8,6)) (.8

are worked out in appendix 7A. Higher-order transitions will, of course, result from
higher-order terms in the expansion of the potential. However, it is not clear that
real potentials are exactly exponential anyway, so the significance of higher-order ..
terms 1s somewhat moot. In order to keep our illustrative example uncluttered, we
shall assume that the effective potential is given by the truncation of Eq. (7.70) at
the first three terms.

Oné can,. however, see that continuing theé expansion of Eq. (7.70) will result in
! even powers of sin 6 so that only transitions involving an even integer change in
rotational quantum number £ will occur, unléss other interaction terms are involved.
This is in agreement with experimental observations on the collision invariance of
ortho and para states of diatomic molecules, unless some catalyst such as a paramag~
netic molecule is introduced which creates relatively strong magnetic dipole inter-
actions during the collision, for example. For collisions.between diamagnetic mole- -
cules we. expect potentials of. the form of Eq. (7.69) to be a.reasonable approximation.
From Stallcop's results (ref. 7) one can show that &' = 2 *+ 2 are at least expected
to be the strongest transition, though the higher-order transitions are not totally
negligible. Note that &' = & transitions are elastic since the rotational energy
depends only on &. The elastic collisions resulting in &' =2 and m''=m % 2

are interesting, as they have produced a flip of the molecule s angular momentum
vector in space with no change in énergy. The integrals needed to calculate the..
transition amplitudes from Eqs. (7.47) and (7.48) are now

i
-
i

:
-

RS S O

O

-0

Uo 62 2 iwzzlt

‘ Izmz'mv = —é__ szz'm' sech” at e dt

i |

; 2u o y1)2 ) 2 ilwgert

+ D,ng. 'm"_—-o (1 E)“m I t sech® at e dt (7 . 77)

P For rotational transitions where the sudden approximation is valid, the ratio
' w/a <<-1, unlike a typical vibrational transition in chapter VI where this ratio was .

C assumed. to be large compared with unity. In thé present case the Fourier transforms
‘ are approximatély

AR s daieachet 4 Shity

5 J' sech? at e1¥22't gp o J. sech? at dt = :}1- tanh. at| = % (7.78)
3 o - -

2

2

= b :

J. t sech? at el“#2'% gt :J- t séch? at dt = 0 (7.19)
4

- - -0
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The contribution of the third term in Eq. (7.70) is negligible because.
x(t)exp{-r ~ o/L)] is an odd function of time. Thus, to first order

2
u, ¢° o

Izmz'nﬂ 7z “wume'm'. -~

(7.80)

At. this ‘point all the elements necessary for calculation of the sudden approxima-
tion .expansions for the probability amplitudes are at hand. First the factors
Iometm' @are multiplied.together and summed as required in Eqs. (7.47) and (7.48); \
next the real terms are all added together and squared and similarly, the imaginary
terms are added together and squared. Finally these squared sums are added together {

: ’ to obtain the transition probability. For example, Eq. (7.47) gives to terms of
' order h~" . .
2 Limt'm' . 1 :
P, = +
me'm' T Agtm T g2 O (_2,,m!, Izmz"m"Iz"m"z'm')

1 . . -6
- EF (If,mk'm' QZ:" Q'Z' " Ilmﬂ."mnll."m"l'"m'"I,Q,'"m'"Z'm') +.o0 . ﬁ(h . )
m m . ) (7.81)

B IR TN R I NIRRT T U

One can see that this expansion rapidly gets beyond the bounds of convenient analytic .. |
expression and becomes a job for machine computation. Nevertheless, it is useful to T
carry the analytic approximations this far before resorting to machine computation, '
as this greatly economizes the machine usage. .

The first order term ia Eq. (7.81) is the same expression as given by the small :
perturbation solution and is hardly adequate for typical.collisions that promote -3
rotations in diatomic gases. Nevertheless it will be a .useful illustration .of method R
to follow through the integrations of the first term of Eq. (7.8l) over the range of ; ]
impact parameters to get an expression for the cross section, and finally over the i
range of velocities to get an expression. for rate coefficient.

thzml'm' Ug(b,u)

szz'm' = - h? aZ(b,u)

+ ... (7.82).

o We will define P, as the function of velocity u given by the first term of
: EqQ. (7.82) when the miss distance b =0

Guczml'm' E? 7.8 : ;
P = .83,
To) hz a2 (u) ( )
° |
then the ratio i
2.
; a. |
P2 o 2{ 0 |
Po € ( a ) + L T (7-84) . |
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2 .
e <f-9-> - e’ S - - (7.85)
a 2L 2L 1 -~ ¢ ) )
1-@-of -2 B

The-element of differential cross-section .is given in terms of

€, the fraction of
the collision.energy transformed to potential energy at the poin

t of c¢losest approach,
by Eq. (6.95)
2b db = -1r02(1 +%_-1-—;—5-) de (7.86)
The total cross section thus becomes.. -
® 1
5 =P J' i,l’zm,db -=?, J‘ (no%e + . ., .)de (7.87)
o. ()

The distance of closest approach is also a function of ¢ . which is troublesome in the
integration because it goes .to « as ¢ approaches zero. However, the strongest

interactions occur where ¢ is near unity, so we expand the weakly varying function
¢ about this point.

. L L |
0 = oo(l - -(%- n Ae) - oo,.l,+?;(l_ -€) + ., ., ] (7.88)

Then the cross section expression becomes.

1
s g2 2L o ,
S ‘rrcoPo J.[[L-f- 5 (1 e)]e + .. .}de
o v

2 2
TOP To~P
o' o 2L " 00
2 _(1 + 300) + . . [ I 2 - (7089)

The quantity Py

is proportional to the first power of collision energy E or in
other words to u?

b2 b2
P = G,C m'm' (mu?/2)?2 § Ciml'm' 2 2.2 7.90
o o anT S\ ) mut (7.90)
The distance of closest approach at b = 0 may be expressed.
G =Lind =y g A (7.91)

mu

where A 1s the spherically avera

ged constant in the exponential interaction poten-
tial given by Eq. (6.105a)
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E = 228880 8 7%/L o § om00/L (7.92)

The factors..P, and o, are now expressed in terms of the variable x, which is
mu?/2kT

2
P (x) = ( 5 “‘Lhz“T' ¢t m)x - B(E‘—I‘p—k-?-) X (7.93)

where the dimensionless constant B 1s defined by the right mést equality of
Eq. (7.93)

0o =L 2n(A/xkT) _ (7.94)

Then the rate coeffic¢ient is

f >S(x)x e X dx
x*

i 2 N -
vrB mL kTJ-{Lz e k’f +21:; (gn k)]x+. . .}x.ex.dxw(7.95)

The threshold value of x occurs where the collision energy equals. the change in
rotational energy

wlct

“ome'm'

|
m1C|

hw22

x* = "t [R' (' + 1) - (8 + 1)]___ZIkT (7.96)

The slowly varying logarithmic factors can, to a good approximation, be equated to
their value at x* and pulled outside the integral

o

u 2 L\BnL? -
Cymarm = 5 10521 +2 k) u 'f (x? 4. . e ax (7.97)
Q x*
where
o =L &n th (7.94a)
29"

Normally, x* or hwggt/KT << 1 and K/hwzgv >> 1, so to a good approximation the first
term in the sudden approximation expansion gives for the rate coefficient,

- 2 -k .
a8 pokep mLﬁsz e ¥ (7.97a)

“ome'm'

Observe that §q. (7.97a) is an Arrhenius relation with.a pre-exponential factor that
varies as
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To carry the. expansions.one step further, we will shorten the notation and let
a single index 3, k, &, and n denote the states with quantum numbers (4',m'),
(",m", (*'",m'"), and (2,m) respectively. The sums over indices 3, k, &, orn
must be recognized as double sums over all values of & and m considered in the set
of coupled states -for-which the matrix elements are. finite., . From Eq. (7.81)

[ "I Iy a\2 3
P = Ing 1 4 §‘ kel - L E E Tl 4y + o ()| (7.98)
- - 2 ~ - 8 e . .

h? 4h° Inj ’ 3h2 k 4 - Inj :

where. P is understood to be the probability of transition from initial state n to

state.. J = _.
LXOLAY RO AR
l"- "'"o""‘—"‘—" ° =—G— 0 - 0 0 -y
Po (UQ(C’)@) ' h"( a, ) - (UO(O)a> e o) (7.99)

where the constant G 1s defined by

ORIy

5" Colig & CakCialey
™ w7 o
The following relations are used.
Uo(b)‘ao>2 i * €
L . 9%) - [ =] = : . (7.101)
Uo(O)a / a 1+ 2L (1 - e)
o €
U O\ 2 22
<°a ) - ‘;21“ (7.102)
(o]
So the cross section may be expressed
1
2,272 ;
S = m02P [l-hzk(l-e.)ir. . .][l-gﬂ%—L(l+2£)(l—s)+. . s]de.
o0 00 h 00
(S (7.103)
Neglecting terms of order (1 - €)L/d4s oneé obtains.
*
2,272
S = nd2p J-‘l + [&--Gﬂ———uzl'— (1 +-Z—L-)](1 -g) + .. .}s de
o o % h 0o
s : .
JToRo [, 1o | enten? (g, 2y,
2 3 1% h2- Y T
_ o2p DLOKTX 2L\ _ . 2L\ mL2kTx
noZp Mo ‘(1 " 300) oft.+ Z)mEEx, ) (7.104)
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: f the same result. as Eq. -(7,89) plus an additional term. This may now be integrated-

: ' - oever all x to obtain.the rate ¢oefficient, again letting . o5 ™ °o and pulling it
n outside the integral

-
m:

' : , : 2. mL kT

2 ' 2 - *
m.’ng mL kT (1 L SmLokTT, .)e-x

o i

n

7.105
n? h? ( b
One can anticipate. that the higher-order terms will be expressible in terms of.a
constant coefficient, such as B and G, that are determined by the size of the matrix
element averages over the molecular axis angular coordinates,.and. higher powers. of .

the dimensionless quantity mL2kT/h%. For t¥gical values of interest in molecular
collisions of diatomic molecules, m ~ 25%107%* gm and L ~ 2x10~°_cm,

2
BLEL . 0.014 1 | (7.106)

TEST e T TR RN T, e e e e s L

Thus, this factor does not promote-convergence of the expansion until temperatures
are well below 100 K,

TR

: : The. first constant B. represents those transitions which occur directly from
{ state n to the final state Jj. The constant G. includes the effect of transitions
) which have, during the course of the collisién, surged from state n to k and then

§  | from state k to J and also some transitions that have followed a path n + k + 2-+3.

Coefficients of higher-order terms will represent transition paths through a still
larger number of states.that are accessible in accordance with the perturbation

; selection rules. Although the multistep transitions are far less probable than a

) single step transition, there are many different paths when a large number of levels

: areée accessible. Thus, the sum over all paths, given by the multiple sums in equa-
tions such as (7.47) and (7.48), can total to a value comparable with the much more
probable single step transitions,

2
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7.8 NUMERICAL INTEGRATION OF THE CLOSE-COUPLED SET OF ROTATIONAL PERTURBATION
EQUATIONS ol

The calculation of the completed set of coupled equations for rotational transi- ...
tions of a diatomic molecule, with realistic collision interaction potentials, is a.
formidable task both for the programmer and for.the computer. However, we can appre- ..
clate all the essential qualitative features of these solutions, by examining some
calculations. for-a very simple single-term potential function, which is the first
term in the expansion of the. exponential interaction, and by truncating the number of
available rotational levels.

To recapitulate our previous results, the equations we need to solve have the
form: .

. i -
ak ""‘g ; anUnk LI k = 1: 2., 3.;-0- . e . (,7.1013.),

where the matrix elements Upy are

- 1 (wp-widt
e = () <2 @107

The rotator wave functions Yy will be taken to be the rigid rotator spherical har-
monic wave functions Y%, where 2 1s the rotator's angular momentum quantum number
and m is the azimuthal quantum number for the projection.of this momentum on the
z-axis. The transition probabilities we seek are just the complex squares of the
amplitudes starting from a given initial state <2m> and ending in the state <£'m'

2Im' *
sz, = 8m,.2'm'3m, 2 m" (7.108)
These probabilities must all sum to unity for every initial state, of course
L ! - 1ot
. - Gi'm
Pon. -1 RPN @ B 413 §

2'm=0 m'=-'

where L. is the limiting rotational state imposed naturally by dissociation of the
molecule, or .artificially by truncating the number of equations at some level suffi-
ciently high that still.higher levels are not involved in the transitions of interest.
We shall use a limit of L =-40. in the examples to follow.

Generally we are most interested in the total transition._probability from initial
rotational level &£ to another level &' and doé not. concern ourselves with the
distribution over azimuthal quantum states m. Thus, we sum over all initial values.
of. m, giving them equal weighting in the collision event, and also sum over all final
values of m'

) [ A )
1 i'tm'
PM' TR 2 Z szm ) (7.110).

me-f m'=-g’
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For purposes of illustrating the method we assume a highly oversimplified
perturbation. function

h
|
Ef : H' -.Ho(t)ainzpe cos? ¢ (7,111).

n |
' ‘ This is just the first term of the expansion of the exponential perturbation which - i
T leads to rotational transitions (Eq. 7.70). The advantage in using this truncated '
T potential is that we then need consider only transitions &' = %, £ 22 and m' =m, i
i m £ 2, which enormously simplifies the programming and shortens the calculations. E.
S In a real collision, higher-order transitions will take place, just as in Kerner's . b
3 treatment of the vibrational transitions discussed in chapter VI. However, the

S 2 + 2 transitions are no doubt the most probable.for real collision perturbations if .
Y. the collision energy is not .too large, because they represent the effect of the .lead- f
S ing term in the perturbation and also because they involve the smallest energy !
changes.

Two different functions will be considered for the. time~dependent part of the , : 3
perturbation; the first is just a square pulse

Ho(t) = E, a constant for 0<t s < (7.112)

which allows us to see the effect of different pulse lengths on the results; the f ]
second is a more realistically shaped pulse ' :

B (t) = E sech?(at) (7.113)

which is a pulse with width about 2/a. We shall wish to apply this analysis to some .
levels where the rotational quantum number £ 1s small; therefore we use the exact
perturbation integrals developed in appendix 7A which are valid for arbitrary values
of % and m, rather than the limiting values valid for large % such as developed

- for rotation coupled vibration transitions in chapter VI.

For the sample calculations the value of B/h has been taken equal 0.27 pusec—?,

which corresponds to the rotational constant for the O molecule (B = l.44 cm™),
Collision energies E/h equal 5, 50, and 500 uusec™! have been chosen, corresponding
to collinear collision energies of about 1/300, 1/30, and 1/3 eV, respectively. Of
course, these values represent the perturbation at. closest approach, so the results.
also apply to the case of higher energy collisions that are glancing. These energies
are ‘the mean collision energies . at temperatures about 30 K, 300 K, and -3000 K. :
However, recall that collisions with the tail of the Maxwell-Boltzmann distribution ‘
. may be more effective in promoting transitions than collisions with molecules having
L the average velocity. For. example, vibrations are already excited to about. one-half
their equilibrium value in gases at the characteristic vibrational temperature, yet at ! ]
this .temperature .the average collision is just reaching the threshold of zero_transi- '
tion probability. __ !

L < e iR

.

Figures 7.1(a), (b), (c) show results for rotational transitions of a diatomic
rotator. as.a function of collision time, where the rotator i1s subject to constant ; !
perturbations of 5, 50, and 500 uusec¢™ ', respectively. The initial rotational.state-
is 2 =4, m=0 for all these examples, Incidentally, initial values of m=2 and 4
give slightly different results; corresponding to the classical notion that the - ;
¥ collision-induced rotations should depend on initial geometry to some extent. ! ‘

P SO
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However, initial values of m = 2 or m = 4 gilve -exactly the same result, as they
should, due to the symmetry of these geometric. configurations.

| The lowest perturbation in figure 7.1(a) corresponds to cryogenic gas collisions.
: The initial state & =-4 is reduced only about 10%, with about 5% each going to the
| adjacent states % =6 and % =2, If the perturbation lasts long enough, the prob-
| abilities periodically surge back.and. forth just as we found in. the two-state approx-
imation; however, there is a slow.but continual drain to the higher rotational states
, that would eventually result in a more or less homogeneous distribution of rotational
v states if the perturbation were.to continue indefinitely, The & = 2. states are
' actually populated more readily than the & = 6 states. because a smaller energy dif-
‘ ference exists between initial and final states; however, a larger degeneracy of '
b o = 6 states exists than .for & = 2, so.in total the higher rotational states are
' populated a bit ahead of the lowér rotational states. ..

TASTAT R T EET R e T

EEE

SIS

Figure 7.1(b) shows the results for a normal temperature level of .collision per-
turbation. The calculation has been deliberately prolonged . beyond the usual.colli--
sion duration just to show the surging of probability back and forth between states..
The periodic pattern is a complex one because it is the result of superposition of

1.0
L=4 e
8t
B/h= 0,27 pusec™ |
E/h=5 /.tusec"‘ :
st ORIGINAL PAGE IS to=#-Mo=0

| OF POOR QUALITY

PROBABILITY OF ROTATIONAL STATEL

0 2 4 6 8 1.0. 1.2 I 1.6
COLLISION TIME, uusec

(a) E/h = 5 uusec™?,

Figure 7.1- Rotational transitions as a function of.collision time for a
constant perturbaticn.
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1.0 8/h= 0,27 uusac™1

ORIGINAL PAGK 18 B/~ 60 pusec™):

OF POOR QUALITY Lg=4.Mg=0
Lid '

U
T

o
T

FS
T

L=6

PROBABILITY OF ROTATIONAL STATE L

)

0 2 4 .6 .8 1.0. 1.2 14 1.6
COLLISION TIME, uusec

(b) E/h = 50 upsec~?,

Figure 7.1- Continued.

different characteristic frequencies between each set of adjacent rotational states.
At this level of perturbation the initial state & = 4 is immediately depopulated .
about 40% on the average, with the adjacent states picking up about 10 to 15%. each,
and the next states picking up about_5% each..

Finally, figure 7.1(¢) shows results for rather high energy collisions (1/3 eV
head-on collision, or a 1 eV collision with e = 33%, the fraction of kinetic. energy
transformed to potential.at closest approach, for example). Here, the initial state
2 = 4 is immediately réduced.to about 15%.probability, and the probabilities of the.
adjacent levels (shown only to. £ = 8) become more or less homogenized with super-
poséd ripple frequencies., : -

Thése results are .reasonably consistent with the experience of shock tube _experi .

menters that at normal temperature about 10 collisions are required to achieve a more
or less equilibrium Boltzmann distribution of rotational states, whereas, at elevated
temperatures.that occur in moderately strong shock waves a single collision is almost
sufficient to achieve.equilibrium. On the other hand, at the low temporatures.that ..
occur in a supersonic.expansion, the order of a hundred collisions or wmore may be
required to achieve rotational equilibrium.
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10 B/h= 0,27 uusac™!
E/h* 500 uyusec™!
. Lg=4,Mg=0
ORIGINAL PAGE I3
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COLLISION TIME, uusec

(¢) E/h = 500 upsec™t.

Figure 7.1~ Concluded.

Next, consider the effect of using a realistic collision-pulse shape.

For the

reduced mass appropriate to an Ar-Oz collision, the mean collision velocity u rela-~
tive to the cénter of mass is about 6x10* em/séc at usual temperatures. . If the
charactéristic perturbation potential length L is the order of 0.3 %, as found in
chapter VI for vibration transitions, the mean collision time 2L/4 dis the order of

0.1 uusec.

Recall that several different interaction potentials between.collision.

partners are generally possible, depending on how the electron spin vectors. happen to.
add up during the collision event, and that the vibrational transitions are heavily
weighted by the. interactions that cccur. along the steepest possible interaction
potential.. Thus, some interactions may promote purely rotational transitions where.

the characteristic perturbation.potential length is double the above.value, or per- —

haps.even more. . Thus, the mean collision times of interest may be 0.2 uusec or more.

This.is all for room temperature collisions..

If the temperatures are reduced by a

factor of 10 to about 30 K, thé collision times are increased by Y10} if the tempera-
tures are increased a factor of 10 to about.3000 K, the collision times are decreased

by v10..

Figure 7.2(a) shows the rotational transitions producéd from an initial state

2 =4, m=-0 when.the collision pulse is. E/t = 50 pusec™! sech?-(t/0.1 upsec).
pulse has an effective width just about 0.2 pusec.

This
The results are. almost the same as

for the constant perturbation pulse shown in figure 7.1(b)_1f that perturbation were

terminated. at 0.2 uusec.

The principal difference is that the time scale is stretched

out & bit in.the béginning and again at thé end of the pulse, and the probabitities

all.tail off asymptotically to constant values rather than terminating with a discon= .
tinuity in the slope as they would for a finite square-pulse.

In figure 7.2(b) the .
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.. PERTURBATION PULSE .
LR Bl -1 1anh? -
. '/ E/h= 60 uusec™ ' sach ('1 ppsoc’
B/h=0.27 pusec™1
Lo~ 4, Mo' 0
Q
- OF
= 6F- .o
> . -
=
- * ¢ L=4
g - .
g . .
g . . /
E .4 = memsamm— .o - ..
: ) L=6. .
2+ . ° .
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. - 2 3 T
; g e IR
e el T 0 ‘.
! 0 e st \ |- :__ _l.é'..‘_—=—._'.—";.'_"'='——=.7.-_--_-;
-3 -2 .. -1 0 J 2 3
COLLISION TIME, uusec
(a) About 0.2 uusec duration. -
o B/h=0.27 m.tsec"l .
;it 1.0 e, Lo",Mo“o
o’ ’ ‘e PERTURBATION PULSE
E/h=50 yysec‘1 s.tac:h2 (/0.2 uusec)
8t
:
. :
a.6}
E.
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g
[=-] . .
g 4+ . .
[-Y . M * .
o‘ L-B .'0 B
2F
0
-4 -3 =2 -1 0 A 2 3 4
COLLISION TIME, uusec
(b) .About 0.4 uusec duration.
Figure_7.2- Rotational transitions for a collision-like perturbation pulse.
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pulse width has been doubled. 1In this case, some probability amplitude surges back .
into the initial state & = &4 _at the end of the collision, just as for a square
pulse terminated at 0.4 pusec in figure 7.1(b).

The collisions with such a low rotational state as & = 4 are rather atypical at
normal temperature; the average rotational level 1s given by

2(2 + 1) = kT/B .

which gives & ~ 27. for normal temperatures and B = 1,44 cm™, At large 2%, a
larger number.of rotational levels are required for the close coupled set of equations
used. In the present case we have truncated.this set at L =40, A calculation_ for
initial & =20, m = 0 is shown in figure 7.3 for a collision-like pulse of

0.2 uusec duration. The principal difference compared with the calculation of 7.2(a)
for the same strength and duration collision pulse is that the collision is more
adiabatic; the initial state & = 20 loses only about 30% of its probability and
recovers to lose only 15% at the finish of the collision event, whereas the initial
state & = &4 lost 60% of its probability. This occurs because the energy spacing to
adjacent levels is significantly larger for the higher rotational state, about
25.times larger for the two cases considered here. This increases. the frequency

woer in the Fourier transform (sechz(at)exp(iwzz.t)) (see Eq. (7.77)) and makes the

v PERTURBATION PULSE
- E/h=50 y#ioc‘1, sech? (/0.1 uusec)

1.0 .o
. .. B/h=0.27 m.«sec°1
) Lg=20,Mg=0
8r
4 . ‘
K B8 . .
> . .
-- . .
= . *
] . .
< .
& ) .
c 4 * .
a . .
2F .' .
. ‘. ,L=18.
T / /22
.-l * - v I
plescs®” - a—en e P T ;;;.—_“.-.-..ﬁ.:-’.d.ﬂ
-3 . -2 - 0 A 2 3

COLLISION TIME, ppsec

Figure 7.3~ Rotation transitions from the initial-state L = 20. for a 0.2 uusec-
collision impulse,
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collision more adiabati¢., In fact, the step size chosen in .the numericéal integrations.
performed by the computer is determined primarily by the maximum value.of wgget that
is. needed for the calculation at hand. We wish the time increment At to be small
compared with the period of rotation BAR(% + 1)/h

At =~ 0,01 h/BR(L + 1) ]

This would give a numerical step every 3.6° on the rotational time scale. TFor-

B/h = 0.27 uusec™® this requires At ~ 0.002 upsec for 4.= 4 and At ~-0.0001 ppsec .. x
for & = 20. Actually the requirement is not quite as severe as .this; the frequency 4
that establishes the acceptable time increment is wggts the difference between the 1
rotational period of the initial and final states. For most of the numerical inte- - ‘
grations shown in the figures of this chapter At = 0,000l uusec was used. Small but : ]
not significant differences were observed when At = 0.001 was used. ‘ i

Still stronger collisions are shown.in figures 7.4(a) and 7.4(b) where peak col-
lision energies are 500 and 1500.uusec™?, respectively, corresponding to head-on
collisions at about 1/3 eV and 1 eV, respectively. For these cases, we have also
chosen very short pulse durations corresponding to interaction along a.very steep
potential of L ~ 0.3 .8 and relative collision velocities about 3x10° ¢m/sec. These
might thus represent those collision interactions which are most effective in produc-
ing vibrational excitation with the coupled rotations as discussed in chapter VI. We -
see that these strong collisions spread out the rotational state populations on both

10 . PERTURBATION PULSE 4

Gt E/h= 500 uusec™ sech? (1/0.01 uusec) .

S ¢ B/Mh=0.27 uusec”! )

Lo =20 , Mo =0 ;

i
8 ; i
. b
ORIGINAL ‘

| oF PO ;

2

26t ‘:
i > - f 1
E i .
t = i 1
' 4 P
at o
L
‘ ;
.2 =~ i
. 3

ghter oot "

Ly < R

~03 =02 =01 0 .01 - U2 .03
COLLISION TIME, uusec

(a) E/h = 500 pusec™i.

Figure 7.4- hotational transitions from L = 20 for collision perturbation pulse.
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(b). E/h = 1500 pusec™?,

Figure 7.4~ Concluded.

sides of. the initial state rather effectively. Actually, higher-order terms would no
S doubt be important in the perturbation for these collisions, giving direct multiple
g jump transitions, so the homogenization would be even more complete than indicated by
- our simple model. This suggests that a reasonable approximation for.the coupled
vibration-rotation transition might be to assume an equilibrium-like distribution of
rotational states produced by each and every collision.

i 4

7.9 CONCLUDING REMARKS

Solutions for rotational collision excitation are found to be exceedingly
lengthy because of the large number of rotational states involved and because the
rotational energy spacing is small compared with KT, or the average collision energy,
for most cases of practical importance. Thus, solutions cannot practically be
carried to.completion analytically even though the formalism for the-expansion of
solutions using the sudden approximation is available; the first-order approximation
in these expansions is not very accurate quantitatively, though it does gilve

171 .

S im0 L M L
o el s " i

i
I

I

i

b




qualitative insight to the problem. Numerical integrations of .the close-coupled set
of equations ¢an now be performed with high-speed computers to glve accurate answers
for collision-induced rotational transitions if .realistic molecular.interaction
potentials are known... Some sample calculations using a severely truncated form of
interaction potential show. the character that these solutions will have, Fully

(. realisti¢ interaction potentials would require retention 6f many more terms leading
to multiple rotational quantum jumps. Although the software development and computing
time required for these more exact calculations is very large — it could be done; .. |
however, it will beée worth doing only when reliable interaction potentials become. }
available. Quantum chemistry computations may very well provide reasonable approxima- . i, '
tions to these interaction poténtials in the near future. A
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APPENDIX 7A

Ll ' -
EVALUATION OF MATRIX ELEMENTS <Yﬂ,‘? sin®. 6. cos? ¢‘Y‘2>

In the collision of a diatomic molecule with an inert particle having exponential=

like repulsive interaction potentials between atomic centers, the strongest rotational
transitions are expected to result from a perturbation term proportional to.
sin? 0 cos? ¢. Thus, we need to evaluate the matrix elements

Izmi?.'m' = <Y&' -

shere, for the case of a rigid rotator, the rotational wave function is

sin® 6 cos? ¢>‘er> (a7.1)

tim¢

+m e m
v = =—— (¢, P, (cos 8) (A7.2)
2 )/ETI &m” 2
1/2
e+ 1 -m!
Com = [ FIED) ] (47.3)

and & and m are the total angular momentum and azimuthal angular momentum quantum
aumbers, respectively. Note that m has been taken as the absolute value of the
latter quantum number, and that both positive and negative rotations are allowed for
{n the wave function of Eq. (A7.2). The integrals over ¢ are the easiest to eval-
uate. Let k = (m' - m)

Case I)
If k=0, that is m' =m

2m

-21—“ J. cos? ¢ d¢ =-%- (A7.4)
o)

Case II)

If k = #2, that is m' =m + 2 and m - 2, respectively

217 27
'Zl_n cos? ¢ et2id do = -2—11? J (-l-'z-vcos 2¢ + %)cos 2¢ do
o (S
2m
- L cos? 2¢ d¢ = 1 (A7.5)
4 4 )
0
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For all other values .of .k -the integral vanishes o

L. o7
'fl?r' J ¢os? ¢.eik¢ d¢ = '§1'1? (-%- ¢os 2¢ + —%—)cos k¢ d¢
o e %
. 0T
G o - 26 cos k¢ d
RIGINAL PN 7 cos 2¢ cos ko do
2.1! . I
2L gin(2 - k)x + sin(2 + k)x - 0. (A7.6) l

Gn| 2(2-w). . 2(2¥K) |,

To evaluate the integrals over 6, the. following two recursion relations between

Legendxé polynomials are used:

m mt1l- m+1
(28 + 1)sin 6 Py = Py "= Py, (A7.7)

. -1 -
(20 + )sin 0 P) = (R +m) (L +m - DE - @ -n+DE-m +-2)P,  (47.8)

Case 1) m' =m

m
.1 Cor
2 e+ DR+ D)

41 =1
(o]

There exist just 3 possibilities leading to finite integrals, namely &''= %, & + 2,
and ¢ - 2. The integral vanishes for all other cases because of the orthogonality
between associated Legendre polynomials having the same value of . m. ..

For &' = %, one obtains for I(A%L,Am)

m m

2'm' 1 1 .
m %t "' @ P BT - YT sin e de (A7.9).

c? _ ,
m m+l, 2 mti, 2 .
1(0,0) = YTRRIE J‘ (P2+1) sin © de +-I (Pﬂ,—l)' sin 6 d6 | j
( 5
c2
e tm (=2 -2

228 + 1)2 MCZ+1 ,m+1 + Cs?.—l,m+1) y
o Cemy [ 20smanl o 204wl ] B
4(2% + 1)(2 + m)! (22 + 3)(L - m)! . 22 - 1)(=-m - 2)! J
1 Gtm+ 2@ +n+l)  @-m@-mn-D] :

2(28 + 1) o 29 + 3 + 2% - 1 ] (A7.10)
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Next 4f &' = & + 2, - e

¢ 3 ORIGINAL PAGE
, \ Stz ,m m+1 IS
L0 = -~ 02 5 J. (Pw.?_i"“ 6 ¢ OF POOR QUALITY

(¢]
___1_‘/_ L -ml(-w+ Dl 2(84m £ 2)1
2 V22 F 1)+ m12(28 + 5) (L +m + 20 (28 + 3) (% = my T
o1 C-nt DA -n+ DR +nt DR tn ) 7.11)

2(28 + 3) 2% + 1) (28 + 5) :

Similarly 1f &''= g - 2

c, C y
v fm~L=-2,m m+1
I(-2,0) = - TR+ DL =) J. (P ) sin 8 de
(o}
.1 G -mi(t-—m+ 21 o 2(8+m)!

T2V AR TmR2RR - A0 - DT A -DE=-m =23

1 C-mQE-a-DE@+mE+m-1D
T2 - D) (2% + D20 - 3) (A7.12)

Case II) m' =m + 2

Expand the integrand with.the following recursion relations

m m+1 m+1
(22 + L)sin 6 By = B, - B)") (A7.7a)
(28! + Dstn 6 BY7% = (2" +m+ 2)(2' +m + DERS - (@ = m - D@ - e
(A7.8a)
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Then 1f &' = & . OF POOR QUALITY.
c, C 4
_ 1 Am7f,mt2 e o ‘ m+1
I(0,2) = "% —--—-——-—(22 " 1)2[:J. R ~m= 1 - ‘“)‘(Pzﬂ) sin 8 de
(¢] . .

'rr ;
+ f (L+m+2)(0 +m+ 1)(Pn£ti)2sin 0 d€|
A ,

1 N OEEE)Y 2(2 4 m + 2)1
"I AD VI T2 F R T DI ,[“ -m = DR - m) et

2(2+m)!
= 1D{%.-m-2)1]

+ Q@+m+2)(L+m+ 1) (22

h 4(22 + 1) (Zz T3t 1)'/(9' tm+ DA +n+2)R -m(2 -m = 1)

(A7.13)
If ' =2 +2
1(2,2) = 1 CQmC2+2,m+2 “(2, +m+ 4)(8 +m+ 3) (Pm+l) in 6 46
’ 42E + 128 + 5) " ™ g S0

(o]

2(8 +m+2)!
L+ 3 - m!

=L (L =-m)!1 (2 - m)!
4 ‘/2(22 IO FWIZEF D GFat T Frntd)(R+n+3) 7

e N T S RN Dlton (47.14)
and 1f &' = & - 2
¢, C "
I(-2,2) = .};..(22"': ;‘:iﬂﬂ 5 J' (2= m=-3)(8-mn-2) @) sin o do
0
G -ml(L-un-4)] 2(4 +m)!

4 TERF D GAm 2D aimT C NG T YT e s DT

}/(Q—m)(l-m- D@ -m~=-2)(2 ~m - 3)
4(22 - 1) (22 + 1)(22 - 3)

(A7.15)
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Now expand the integrand with the following recursion relations

(24 + Dsin 0 Py = (A +m) (2 +m = 1)9?21 - (A -m+ 1)L ~m+ 2)p§;: (A7.7b)

m~2 m-

(22' + )sin o F);" = P s : (A7.8b)

1 -
L1+ PAES
Then following the same procedures as above, when &' =2

Y S W
4(22 + 1) \28 + 3 ~ 22 -

1(0,-2) = - ])/(z T N Y O, X))

(A7.16)
when &' = 2 + 2
1 (R -m+4)Q-m+ND@R-m+ 2)(L -m+ 1)
122 = gy ) 2L+ DL T D) (47.17)
and when &' = ¢ ~ 2
_ 1 Ctn-3Q+m-2)¢+tn- D& +m -
1(-2,-2) = 7o5q - -1)V. L + D (28 = 3) (47.18)

A somewhat more symmetrical formalism is evident if we define 2 = (& + 2')/2 and !
fil = (m+m')/2, that is the values of % and m averaged over.initial and final ’
states. Then for &' = %

1(0,0) = 1 [(2+m+2)(2+m+1)+(2—m)(2—m-l)]

2022 + 1) 2% + 3 2% - 1 (A7.19)

1 1

_ - _ 1 , .
1(0,2) = 1(0,-2) = - 7737 ¥ D) (22 T3 P o1

VE+ WA FEFDE -DE -8+ D
(47.20)

R

Such transitions are of course elastic and contribute to elastic¢ scattering, along
with the contribution provided by the first term in the interaction potential. The
inelastic scattering matrix elements are those for &' =2 * 2

1(2,0) = 1(=2,0) = 1 }Ki+m)(§+m+1)(i-m)(i-m+l) (47.21)

fede 2T,

227 + 1) (2% = 1) (2%-+ 3).

, 1 V(E+ﬁ+2)(§+,m+1)(2+fﬁ)(i+ﬁ-1)
2,2) = 1(=2,-2) = ——= : S A7.22
1(2,2) = I( ) 4(22 + 1) (2% = 1)(2% + 3) ¢ )

- 1 A -A+DA-F+ DA -MWE=f-1

I 2,"'2 = I ':A,Z = N V - . — A .2

() (=2,2) 4(29 + 1) (2% - 1) (2T + 3) (47.23)
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CHAPTER VIII TRANSITIONS AT POTENTIAL SURFACE CROSSINGS
ORIGINAL PAGE [S
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OF POOR QUALITY ) 8.1 SUMMARY
i' ! The interaction .between ¢lose-lying elgenstates is analyzed to.show the form of.
S potential curves that .occur in a region of "potential crossing.'  Potentials of .like

symmetry are found to avoid crossing; potentials of different symmetry may very
nearly cross. The Landau-Zener-Steuckelberg method of evaluating the probability of -
transition from oné potential surface to the other is derived as a function of the
collision veléocity. In spite of severée limitations in the assumptions of the
Landau-Zener method that would seem to. invalidate it for most conditions o6f interest,
the method is found to give reascnably good results that agreé with experiment, at
least for simple charge exchange type reactions. This is partly due to the fact .that
inaccuracies in the transition probability are someéwhat mitigated, in performing the
integrations to obtain collision rross section and the rate coefficient, The theoret-
ical cross sections do, however, fall off as E~*/2 rather than as E™*, as gener-
ally observed in high-collision energy éxperiments.

L
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8.2 INTRODUCTION

e B T

=3

In the previous two chapters, the excitation of rotations and vibrations has
been considered without invoking the.concept of a potential crossing at which the
transition occurs. This was possible because analytic expressions for the rotational
and vibrational wave functions were known with good accuracy, and the electronic wave e e
functions were assumed to be undisturbed in the collisions .leading to these tramnsi- - 1
tions. However, when electronic excitation, atom exchange, or ionization reactions )
are considered, the electronic wave functions are changed. If these functions were
known in detail, we could proceed to solve perturbation transition problems in a : i
manner similar to the rotational and vibrational excitation problems;_ that is, the
perturbation function would be used to evaluate the transition matrix elements
involved in solutions to a closed-coupled set of differential equations. Electronic
wave functions are actually being evaluated with fairly good accuracy with large
digital computers at the present time, at least for diatomic molecules, and eventually
reaction rate problems may be solved in this way using the computer. However, for.
most engineering needs the electronic wave functions of multieléctron systems are not
avallable at present; even when they become available, they involve so many coordinate . ‘
variables that evaluation of the matrix elements will be exceedingly time consuming.
For present purposes then, we are interested in developing somé analytic approxima-
tions that are useful guides to the functional relationships involved and that may be
useful later in developing reasonably eéconomical computeér solutions to the problem.
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Since the électronic wave functions of multielectron systems are not generally E \
available, the interaction potentials between such systéms are not calculable from i
fundamental principles. either. Howéver, many of the attractive potential curves are :

known with good accuracy from spectroscopic data, a few points.on repulsive potentials %

are also available from spectroscopic data, and somé average poténtia’ interactioms: '
are available from scattering meéasureménts and from measurements of t.ansport proper-
ties of gases such as viscosity, thermal conductivity, mass. diffusion, or electrical 4 ]
conductivity. For present purposés we will assume that the interaction potential E
functions are known and proceed with solutions from this premise, but it should be
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recognized that in actual engineering practice the results are of limited. application
because precise interaction potentials are not generally available.

8.3 POTENTIAL SURFACE CROSSING...

ORIGINAL . PAGE IS
OF POOR QUALITY

Frequently two potential surfaces come very close to one another or.even .appear .
to cross one another, depending on the symmetries of the electronic wave functions

POTENTIAL U

fo

INTERPARTICLE DISTANCE

Figure 8.1~ Crossing between potential
surfaces as a function of interpar-

ticle distance neglecting coupling

interaction.

POTENTIAL U

INTERPARTICLE DISTANCE, r

Figure 8.2- Potential surfaces in the

region of strong coupling

interaction.
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involved. This situation is illustrated in .
figure 8.1, where the. potentials of two
colliding particles in the ground state,

A + B, and in an excited electronic state,

A + B*, are shown. Theoretically the poten~-
tials can cross one another only where .they
apply to different symmetry states; if they
are for. the same symmetry, a coupling inter-
actioa occurs which.splits the potentials
apart as diagrammed in figure 8.2.

Before considering the motion of the
colliding particles along the two potential
surfaces, we need to consider the effect of
coupling between the two electronic states
at.some fixed distance r.. If the motion
of the two nuclear particles is relatively
slow, the electronic states will have time
to relax to their-steady state values at
each position. This model of the collision
process is known as the Born~Oppenheimer.
approximation., It is generally a good
approximation for the collision between two
neavy molecules at the kinetie¢ velocities
that obtain near threshold of most reac-

tions. It is often not a good approximation. .

for electron impact processes; for this case
a sudden approximation will generally give
better results., The concept of a.potential.
surface loses its validity anyway when the .
Born-Oppenheimer approximation breaks down,
for the potential rcpresents the combined
nuclear repulsions and electronic interac-
tion energy for the collision pair.

The solutions for transition are needed
primarily in.the region of the crossing
point, where it will often be sufficient to
use a two-level approximation and neglect.
all other-excitéd electronic states. Let
the Hamiltonlan operator be expressed as
the sum

H=H +H - (8.1)
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where H, contains the dominant terms that determine .the electronic eigenfunction
away from the crossing point, and H' represents the effect of the interaction
between states that becomes sizable only in the region near the crossing point r4.

We will not look for the form of this coupling perturbation in.detail, but presumably
it represents effects such as magnetic quadrupole interactions, or angular momentum
coupling, or other higher order terms in the exact Hamiltonian that can be neglected
with good approximation whenever the eigenvalues for the two states are. far apart.

Let ¢, and ¢, be orthonormal eigenfunctions of the operator H, that represent

good approximations to the true wavefunctions away from the crossing point

Hy¢y = €16, | (8.2a)

B, = €0, ‘ (8.2b)

The potential energies U, and U, represent .the total electronic energy; these may
be obtained approximately by operating on ¢, and ¢, with the exact Hamiltonian,
then multiplying by ¢%¥ and ¢%, respectively, and finally averaging over all space

vy = (ol ) = (odfige,) + (oMle)) = ey 4+ Hy, (8. 3a)
G () - () ¢ () mectm, @

where Hij are defined as the perturbation matrix elements
TR CCUN I (8.4)

Now in the region of the crossing point let the wave function be a linear combination
of ¢, and ¢,

q} = al¢1 + a2¢;2v (8-5)

Substituting this wave function in the exact steady state Schroedinger equation
yields

(ﬁc + H')Y = E(a 0, +a,0,) = a e, + a,e,9, + a,H'¢, +.azﬁ'¢2 (8.€)

Multiply Eq. (8.6) first by ¢f and . average over all space, and again by ¢¥ and
average overall space, to get a set of two simultaneous equations to solve for_the
¢onstants a; and aj

(e; - E)a; + ayH;, + a,H,, =0 (8.7a).
(e, - E)a, + a,H,, + a,H,, =0 (8.7b)

with the perturbation matrix elements Hij again defined by Eq. (8.4). The allowed .
energy levels E can be obtained without®actually solving for the constants a; and

a,, since the set of "Eqs. (8.7a) and (8.7b) have solutions if and only if the
matrix equation
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= 0 (8.8)

: €, +Hy, - E Hys
4

is satisfied. The two roots of this determinant are
( -

Bed G, #H) 4 (e +1,0) £ 5 VIGe # By - G B 1P 4 M,
(8.9

the operator H 18 Hermitian so H,, -equals H,, and Eq. (8.9) may be .expressed

E =% (U, + U,) :% ‘f(ul - U,)? + 4H}, (8.10)

Far from the crossing point H,, 1s small compared with |U1 - U2| and the ;
solution reduces to

g — L (U; + Up) ¢ i (Uy - Up) =U; or Uy (8.11a)
rér, 2 2

In the neighborhood of r,, U; ~ U, and the solution reduces to

1
E—— = (U, +Uy) £H;, (8.11b)
r=r, 2

Thus, the potentials are split apart by the coupling efféct and do not cross one
another, as shown in figure 8.2, and the perturbation matrix element H,, représents
one-half the energy of separation at the point of closest approach. The potential.
surfacés are prevented from crossing one another by the coupling perturbation, but the
strongest transitions will occur at the distance where the closest eigenvalues and the
strongest coupling occur. Of course, if the symmetry of the two wave functious ¢,
and ¢, is different in a way not affected by the perturbation H', then the perturba-
v tion matrix elements H,, vanish and the potentials U, and U, are allowed to cross
5 one another.

Experimentally, spectroscopists observe that strongest coupling occurs when.the ]
L' two electronic wave functions have the same symmetry type, and that negligible cou- 1
; pling occurs when the wave functions have different symmetry. This gives rise to the
so-called noncrossing rule, namely: potential surfaces for molecular wave functions 3
having the same symmetry do not cross. In reality there is no -doubt always some 1
coupling produced by small highér-order terms in the Hamiltonian which are normally
negligible, but when the symmetry types are different the perturbation matrix element
H,, 1s so small that for all practical purposes the. poténtial. surfaces may be
treated as though they actually cross. On the other hand when the. electronic wave
functions have theé same symmétry, the matrix elements H,, can become quite large
and thé spectroscopist often deduces potentials with rather irregular shapes as a
result.

Thé spectroscopist only observés effects of potwntial surface crossing whén at
least one of the surfaces représénts a bound state-and thereforé gives rise to an.
observable vibration-rotation spectrum. If the two poténtials represent different
électronic symmetry types, the effect is as shown in figure 8.3(a): the vibrational
energy levels may be broadened in the région near the crossing, even to- thé point of
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being unrecognizable in a relatively weak SYMMETRY A

spectrum, but above and below the crossing
the vibrational levels.will be relatively.
sharp and 6cécur at the normal .levels for .

an harmoni¢ oscillator with appropriate
corrections .for anharmonic potential shape. . .
As we shall find later, the nuclear motions.
for the upper.vibrational states proceed as _.
though the potential surface is unbroken,
whenever H,, Js exceedingly small, When
the.coupling interaction is large, as shown
for potentials of the same symmetry type in
figure 8.3(b), the spectrum is quite.dif-
ferent. As long as the internuclear — :
motions are not too high velocity, the

electroni¢ eigenfunctions adjust adiabati- . a) DIFFERENT SYMMETRY  b) SAME SYMMETRY.
¢ally to stay on their initial potential TYPES . TYPES

surface. The vibrational levels of the

lower surface will be truncated near the Figure 8.3~ Typical effects of potential
maximum produced in this surface; the surface crossing on observed vibra-
upper “levels of this truncated .set may be tional energy levels.

somewhat broadened as a result of tunnel-

ing through the barrier. The upper surface typically results in a tightly bound
state with a narrow, steep potential that gives rise to a widely spaced vibration
levels. Occasionally crossing between two bound state potentials are observed; these
may give rise to some rather strange loocking potential surfaces (refs. 1 and 2).

POTéNTIAL U

SYMMETRY.A .

SYMMETRY A

A$ an example of the case shown in figure 8.3(a), the CRO molecule, which is an
important species in. upper atmosphere reactions is found to have very diffuse vibra-
tional levels around the 7th and 8th levels of the A%m state of the molecule; this
is observed by the spectroscopist looking at the A%r + X?1 band system of CRO.
Presumably a repulsive potential crosse: near these levels; although the symmetry of
the repulsive potential is not known, it is presumably different than the 27 state,
since the vibrational levels above.the 8th are observed with relative sharp eigen--
values again, so the crossing perturbation must be modest. An example of the stronger
perturbation between like symmetries is given by the Bt (o + 3A) and g(m - mk)
states of CO. Application of the rule that .potentials of like symmetry do. not cross
led spectroscopist A. G. Gaydon (ref. 2) to predict the correct values for dissocia-
tion energy of both CO and Nz long before more direct experimental evidence was avail-
able, while most other spectroscopists favored lower values that seemed consistent
with extrapolation of vibrational level spacing to a lower limit. Thus, the.non-
crossing rule is now well established as a practical and useful guide to the interpre-

tation of spectra. .

8.4 TIME-DEPENDENT SOLUTIONS

When the nuclear centers are moving, the wave functions. ¢, and ¢, are functions
of both the électronic coordinates ( and the internuclear distance r. The latter.
is time-dependent, 80 wé now neeéd to solve the time-dependent Schroedinger equation

1n ¥ - iy : (8.12) ,

st
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The_wave_function ¢ is assumed to be the two-state approximation

t t
b= al(t)¢1(r.q)exp(-%f Hzldt,) + aa(t)¢2(r_..q)e'xp(- %f szdt) (8.13)

x

The coefficients a; and a, that were constant in the last section are now functioms..
of time, as are the wave functions ¢, and ¢, and the perturbation matrix elements
Hyy» Hyp, and Hy,.

Substituting Eq. (8.13) in (8.12), one obtains
ORIGINAL PAGE IS

t
exp(—. .fin H114t) (ihél + alH].l +,iha'-aé-t- ¢1 . OE POOR QUAL'TY

t.
+ e.xp_(— % f szdt) (ihéz + a,H,, + iha, ad?)cpz
OO .

t t
= exp(—-% f Hndt) a,H¢, + exp (— % f szdt> ayHé, (8.14)
- - - i - . -

-

Now multiply first by ¢%¥ = exp[(i/h) fwt'l-llv,_dt] and average over all_space, then by
o3 = exp[(i/h) f: H,,dt] and average over all space, to obtain the coupled equations

T <¢1 & 1> <¢1 at ¢ >a2 "R leaz eth~ (8.152) .
a - iA
ECE IHIEROE TS SR (8.15b)
by f Wy = Hyadde (8.16)

The matrix elements now represent the average of the total Hamiltonian operator
= *~
Hy, ,<¢iH¢’j> (8.17)

rather than the averages of the perturbation _.H' _as. in Eq. (8.4). The elements H,,
are, however, the same as before

By = odonr) + (ofte) = (of'e) = (elfe;) (8.18)
while the elements H,, and H,, are just the unperturbed U, and U, respectively,
Hy; =0y (8.19a)

Hap =-Uy (8.19b)
at least to.the level of the Born-Oppenheimer.approximation.

Note that Egqs. (8.15a) and (8.15b) indicate that motion of the nuclei can produce
electronic transitions even if H,, vanishes. For example, in the straight line

184

R e PN i

AR




Eak il ob A o Lt

N ek et e e

trajectory shown in figure 8.4, an approximation that becomes valid in the limit of
very small interaction, .

: d (2Ll
€= ut dc &8 (8r'+ r 89)
o8 & N L (er x1 3
(Lde4y) = (<Eim8r o) + (1% ¢1>) . (8.20)
where the 2z axis has been defined to be warallel with, DL
the relative velocity vector U.. Transitions among I
states of the same symmetry (e.g., L -+ L, 7 -+ 7, etc.,. Pl
in the case of two atom or diatomic molecule collisions) _ r : —
are promoted by the first term on the right side of
Eq. (8.20); tiznsitiomns amnong states of.different T
:zzm:::znée£§;; I'>m, m > A, ete.) are promoted by Figure 8.4~ Straight line
' collision trajectory
coordinates,

8.5 LANDAU-ZENER TRANSITION PROBABILITY

The basic quantum treatment of transition probability at a potential crossing, or
near crossing, was worked out as. far back as 1932 by Landau. (ref. 3), Zener (ref. 4),
and Stueckelberg (ref. 5). Reviews of the method have been given by Eyring, Walter,
and Kimball (ref. 6) and by Geltman (ref. 7), among others. The method has not been
widely applied to calculation of specific reaction rates because it depends on
knowledge of the potential shapes (H,, and Hy,) .and the perturbation separation
between potentials, Hy», at the crossing point. Normally these quantities have been
unavailable, particularly in the case of repulsive potentials which are of higher
degeneracy and therefore of greatest influence in collision problems. Most of our
reliable information on specific potentials is presently limited to the lower- -
degeneracy, attractive-potential situations where the spectroscopist can observe a
rotational-vibrational spectrum and deduce the potential turning points. at each.
cbserved eigenvalue of energy using the Rydberg-Klein-Reese method. (See chapter V

physical prccesses that occur -during reaction; moreover, accurate potentials, includ-
ing the repulsive states, are now being computed by numerical solutions of
Schroedinger's equation using large expansions of the wave functions into basis sets
such as Slater type electronic orbitals or Gaussian orbitals (refs. 9 and 10). The
one quantity that will be difficult to assess accurately even with high speed com-
puters is the perturbation interaction H,,; however, in time this quantity will
probably also become.known for specific cases of interest. For these reasons then it
should be profitable to follow the Landau-Zener derivation in some detail.

The Landau-Zener method assumes. that the nuclear motion terms are small compared

with the coupling interaction terms, in which case the cotpled set of differential
Eq. (8.15) reduce to

~-1A.

; L a,H,, e (8.21a)

alE——
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Differentiate (8,21b) to obtain
. i . . A2 i. 5 iA
8, = - iL[leaz *H 8, t R H 0y, :,ﬁzx)aéle (8.22)
and.eliminate &, and.a, with the help of Eqs. (8.21a) and (8.21b)
H H?
v 12 . 12

Now assume that the major contribution to the transition probability takes place in a
very small region near the crossing point so that. the difference H,, - Hy;, is a
linear function of r and.therefore of ¢t

sz-Hllmaht‘f‘.. .

1 4 (8.24)
¢ =3 3¢ (Hzp = Hyy)

where t is taken to be zero at the crossing point. Also the difference 2H,,
betweeir the adiabatic potentials.. E, and E; (fig. 8.2) is assumed approximately
constant

Hyj,~ Bh, H,,=0 _ (8.25)

Then the differential Eq. (8.23) becomes
d, - iata, + g%a, = 0 (8.26)

Equation (8.26) is transformed by replacing the independent variable t with
the complex variable =z

z = otl? im/u t = otf? (-L + "j":) t (8.27)
Z /2
and the dependent variable a with_the dependent variable b
wn?

With these transformations one obtains

2
a a oif2 AT/ (& +;-'b) ez /% (8.29a)
. 2
~iata = -iaz (%§-+-§-b) e /4 (8.29D),
w4 1d4% . db 1, z? 2% /4
a ia[gz—-é' + 2 iz + (-2- + T)b]e B (8.29¢)
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and the differential Eq. (8.26) becomes .

d*b A
reri-g)e-o
ORIGINAL PAGE I8
where the quantity n is the complex number OF POOR QUALITY
- 185 %
n === (8.31)

For the moment we will assume that.the transition occurs in the.direction which makes

& positive.. Later we will return to consider negative «. Equation (8.30) is

Weber's equation, and the solutione are the parabolic cylindrical functions Dn(2),

Dop-,(iz) defined in Whittaker and Watson (ref. 1l1). We shall only need be concerned .__ ‘
with the asymptotic behavior of these functions since the. transition probability will . &
be obtained from the solution at t = +», and the initial conditions will be relaved
to the solution at t = -», with t = 0 defined as the time the collision system "
reaches the potential crossing point. The leading term of the parabolic cylindrical ;

functions in the expansion in inverse powers of 2z 1is given by Whittaker and Watson i
(ref. 11), £
D_(2). —T;T:;* 0 e-zz/u , _.%2 < arg z < %} (8.32a) ;é ;
A J
—_— " e-zz/“' - F{?z) el ,mn1 ezz/“ s %-< arg z < %} (8.32b) A
—_— " e-zz/“ - P{?:) e~im -n-1 ezz/“ Lﬂ,,fﬂ%g <argz < - %w(8.32c)

The arguments of the complex quantities z, iz, and 2?2

from the following relations

are immediately observed

z = (a}/? ei"/“)t =.—|z|ei“/“ - lz|e-ian/u £ <0 1
- |zleiw/q £ > 0

1z = 1|z]e”13M/% o || 71T/ t<0 ¢ (8.33)
= i[z]el™* o [g]tiT/H £ >0
z? = [z]? eln/? =i|z|2 all t J

Now the asymptotic value D,(z) is
~ian/4,~18%/a -i|z|2/u
Dn(z) —?_;-_—w-* (|z|e ) e

, e-ZﬂBz/halzl-iBg/d oilz[?/
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thus, the absolute magnitude of Dy(z) is in the limit t = ~e

3 2
-3TR" /ua
P. IDn(ﬁ}I ot © (8.35)
]
r Note that any real number (such as |z|) raised to the ith power-has the magnitude

{ of unity.

-

" The general solution for the ¢oefficient b in Eq. (8.30), a second order dif-

i“ ferential equation, may be expressed as a linear combination of any twoé 'independent.

3 parabolic. cylindrical functions, such as Dy(z) and D_,_,(iz), with coefficients

X determined to fit the boundary conditions. In the present derivation we will define
the first coefficient b of interest to be the-one having vanishing probability at

TS RBAL T AT DT b L I T e T b et

: t = -=»; in this case.the coefficient of Dj(z) must vanish, since this function has a
t{ finite limit at t = -»- as given by Eq. (8.35). However,. the function D..(12) 1s ’
o observed to vanish at t = -« .
3
. , ~(n+1) 2% /4 i R
2 D_,.,(12) —5=* (12) e ? :
L i )
& - 219y 2 i h
E' - (lzlﬁ in/u)gi& Ja)-1 ei|z| /4 . ]
- ]
K 2 2 2 4
Q : o8 [uo . |z|iB-/a ei|2| /4 5.36) :
; l ZT e—i"/“ (_;_.3. [N ., .
: ?
3 Thus, the absolute magnitude of D_,_ (iz) vanishes at t = - E
= enez/kav !
o -— ? 4
lD-n—l(iz)l t=—= 2] 0 (8.37) ; i
Define a, as the channel with zero initial probability, then a, can be
expressed ;
. 2 2 P
; a, = b2 ez ) /'k-—= AD—n-l(iZ)ez /" (8' 38) i

where A 1is a constant coefficient which will be deéetermined by the boundary condi-
tion that |a1(t =,_¢)| = Lo

From Eq. (8.2ib)

| el et S s
3 ! Hyp 2 B dt dz e
E From Eqs. (8.38) and (8.27).

3

{ da, . db

3 dz (dz * 3 bz) e (8.40a)
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Thus

w1 /2 2
aJ, (i“/“) iA( 3 )[d(fz.) .“z) - %& Dﬂn"l(izaﬁ?‘ /"' (8.4”

The bracketed factor in Eq. (8.41) can be expressed in terms of . D.p(iz) using a
recursion relation proven by Whittaker_and Watson (ref. 11)

L5 () + 5D (2) - () =0 (8.42a)
which 1is equivalent to
Lo @ -4 (=D, @ (8.42b)
- - iz z) = -
015y Pones (8) = 5 Dp, (2) = D (2) (8.42¢)
g Consequently, a, may be expressed
f 1/2 2 -
w a; = at 2)e? [ut(din/4)=1A (8.43)
; g “-n
? The magnitude of this quantity must equal unity at t = -«
22
) e ) e
- 2 2
CRIGINAL PAGE IS — (| z]e in‘{'lf)iB /o eilzl /4
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(T8 ba, 187 2| * (8.44)
2
|p_2)| —— & e (8.45)
Thus
_ 18] -mB%/ua
Al = =75 e (8.46)
o,
Now the probability of transition from potential surfaée U; to potential surface
Us d1s given by
= lim |a2|2 = A® lim |D (iz)|2‘
Lo .
) g2 -mg?/20 »
= =g lim |D (iz) (8.47)
o Lores | -n-1 |
189

dnakiss -

R S,



ism/w

For t > 0, (iz) = |z]e , 80 the argument of i1z 48 between /4 and 57/4
in this limit, Consequently, the asymptotic form of. D,(z) given by Eq. /.,32b) must
be used, '

. y 2
D___, (i2).= (zy~ () 25l _ -1;-(-;1-/:2—%_’-—1-)- om (1)L (4,0 om2" /4 (8.48)

The first term on the right si'» of (8.48) vanishes at t.= » just as in Eq. (8.37),
because of the factor sz'* that is present. The TI'(n.+4 l)_is evaluated from a
relation (ref. 12) between T'(i1y) and the sinh my

2 = ———L—- v
IrEN|? = soimry ) (8.49)
Thus
82
2 -1 {—
TGa + 1|2 = [arm |? = (22) T = (& 22 : (8.50)
(—oz_) sinh n (—a—) sinh 7 (~— _
2
27.sinh il 2 2 2 2/.12
o ~im=(mB%/a) | |~1iB%/o, di3w/w.~1iB%/a =~1i|z|[%/«
|D_n_1(iz)%2 = TN Ie " |z| (e ) e | I
2 sinh m8%/a | ~m8%/ua|2
= 51
el l (8.51)
Finally, the probability of transition is
2 2
P = A’ ln|D___ (iz)]
2 2 2 2 2
- (%r) o~TB /2a(é%)(en6 /o _ =78 /a)ﬁ-ne /2a
2 7.
=] - e-an“/a (8.52a)

Recall that in the definition of the complex constant =n, Eq. (8.31), o was taken to
be positive by defining the collision event so that H,, was initially less than .Hj,

1d

However, where the .inverse transition. is considered, the differential is observed to
be invariant under time reversal (z + -z). Thus, one can conclude that transition
probability is independent of the direction of traverse through the crossing point,

R SN

AA.___-J;_A P

and the time reversed case provides the solution where o is negative. Therefore, in . ... .. . .

general, the transition probability of Eq. (8.52a) is given by

, 2-
pai - e 28|l (8.52b)

Equation (8.52b) is still only the probability of transition for one traverse of .

the potential crossing; in a collision event where. E > E*, the potential at the
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crossing point, two.traverses take place, one in the ingoing direction and the other
in the reverse direction. By conservation of probability, the factor §

g = o228/ |al (8.52¢)

represents the probability that transition does not occur in a single crossing. Thus
the total probability of transition. in.a single collision.event is

ORGIAL.PAGE 1§ Fiwg =S = 8) + (1 - 8)8 =251 - 8)..
OF POOR QUALITY o28?/lal oy _ m2ne/a]

=2

(8.54)

This is. the result known. as the Landau-Zener-Stueckelberg transition probability.
8.6 LIMITATIONS OF LANDAU-ZENER METHOD

The Landeu-Zener method has some rather severe limitations when the consequences -
of the assumptions involved are examined critically. This problem has been discussed
by Bates (ref. 13) and more recently by Thorson, Pelos, and Boorstein (ref. 14), with
the conclusion that the method is clearly not rigorous in most collisions of practical
interest. Without going intoc great detail, the method fails at very low energy
because the trajectory of the collisions has been treated semiclassically, and near .
threshold, where the velocity at the crossing point nearly vanishes, the wavelength
of the collision partner's kinetic motion becomes long compared with the characteris-
tic length of potential change — a situation where the classical trajectory obviously
breaks down. Again at high-collision energies the éffective width of the reaction
zone A, increases, as shown by Bates (ref. 13).

4nuoh
by ~ 3 (8.55)
I (Hiy - Hyy)

Thus, at very high velocity u,, the assumptions of constant H;, and linear

H,, - Hy, are unwarranted. Moreover, the reaction zone may reach farther than .the
classical turning point of the trajectory, in which case taking the limit at t = 4=
gives too large a transition probability. Finally, the 2-state model has limitations;
in typical collisions. there is.a multiplicity of potential crossings with several
excited state.potentials close enough to demand an expansion of the wave functions
into a linear combination of all nearby states, and with reaction zones that may over-
lap one another. Such a situation is shown schematically in figure 8.5, where the
collision particles have incomplete multielectron outer shells that give rise to a
wide range of possible spin and angular momentum combinations, many with multiple
degeneracy. Interactions between multiple degenerate states will give rise to a
multiplicity of close-lying lzvels near the crossing point; thus, reaction. proceeds .
by a complex reaction path that may take many different routes through the maze of
potential crossings. One consequence of this large multiplicity of crossing points is
that one of them is bound .to occur near the energy difference between the final state.
and initial.state systems, shown as E* in figure 8.5 for the transition from A + B
to A + B*. Two such. crossing points near the threshold of. E*- are indicated. in the

figure by the ¢ircled intersections, but in actual practice even more .might .be opera- -

tive. The figure shows 4 interaction potentials for the lower state, which is the

CRIGINAL phpw o 191
o Gly Yy
OF POOR QuALITY .

)




= A

7

B i B R

ASCER A SRS i o RS & i S Kol St A S NP A
. s . . ‘

\ ORIGINAL PAGE .:3 case for two ground state nitrogen atoms,
OF POOR QUALI for example, having three unpaired

p-electrona each in the outer shell which . «

may add spins to give *I, %z, 5%, and 2 ‘

A*+B states. The latter two are repulsive ilere s

—— v — most of the spins are additive and the Pauli H
exclusion principle operates to prevent .

A+B¢* these electrons .from occupying the same

l quantum.cell in phase space.. The I and
Z. states are attractive for the reason

£ that the paired spin electrons can .occupy

the same cell in phase space, and these set ]

up a resonance as they transfer from one ‘
A+B nuclear center .to thé other during colli- ‘
sion, leading to a lower total .energy and o
therefore, a binding. However, other atoms .
in typical gases, such as 0 and C, have ‘
greater multiplicity yet, as do the excited i
State species where the spin pairing possi~ - i
bilities become still more numérous as. addi- . i
tional.cells in phase space are opened up :
Figure 8.5~ Schematic diagram .of typical. to the electrons and leave unfilled quantum .

multiple interaction potentisl cross- cells in the lower eigenstates. Thus, the

ings that occéur. for multielectron final transition probability observed ? E
collision particles that have large experimentally usually involves much more § '
degeneracy. :

than a single potential crossing point, and
the reader can readily appreciate the . :
difficulty in.making meaningful comparisons between experiment .and calculations. :

D. R. Bates (ref. 13) makes comparisons between Landau-Zener calculations and D
some qualitatively correct transition probabilities for charge exchange between colli-
sion partners like H™ + Na+, Ht + A2++, He +. Be s etc., where the transition occurs
between two s-states. The results are shown in figure 8.6. Bates concludes that the
Landau~Zener probability is not highly accurate, since even in this favorable case of
8-s transitions the probability peaks more closely to threshold than it should.

[P,
i

Hasted (ref. 15) summarizes quantum calculations of charge exchange process made
prior to. 1964 (refs. 16-18), and the experimental studies of curve crossing charge.
ex¢hange processes that were conducted also before that time (refs. 19 and 20). P
Hasted concludes that the Landau-Zener formula is .reasonably consistent with the data [
provided that log;, H,, 1s a smoothly varying function of (re)™'. Figure 8.7 shows o
the empirical curve for. Hy; that provides agreement. between the experiments and. :
theory, and also the calculated values of H;» which existed. The calculated Hy»
are seen-.to scatter reasonably closely about the empirical curve

;
More recently, Moseley, Olson, and Petérson (ref.w21) compared Landau-Zener
results with a number of 1on-ion mutual neutralization experiments.. For simple atom-

atom systems the reaction approximates a series of single potential crossings well

removed from one.another, and in this case the Landau-Zener method gives reasonably

good results, ..s shown in table 8.1, However, Moseley et .al. point out that the ..

Landau~-Zener model cannot predict the detailed structure.that. is observed in the

H" + H™ case, for example. In these comparisons, interaction matrix elements H,,

were determined.semi-e'pirically. The molecular.ion reactions are more complicated

due to the large multi, licity of .crossings that occur in this case, somewhat as
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Figure 8.6~ Probability P of charge
transfer for s-s-transitions; calcu=
lated from lLandau=Zener. formula;
qualitative corrected result., In
(a) Zy 18 large and in (b)) 2, 1is
moderate or small in sense described
in text.

suggested by figure 8.5. Olson (rvef. 22)
devalops a. so-called "absorbing-sphere- .
model," which is based on the Landau=

zener approximation, to account for this
situation. Olson's method gives reasonably
pood - results for molécular ion-molecular
ion charge cxchainge reactions as shown in .
table 8.2. Here, "reasonably good" means
an agreement.within factors of about 3,
that. 15, good from the viewpoint.of engi-

neering applications, though from a. purely _ - 7. .

scientific viewpoint one could certainly
désire-more. In actual practice the
inaceuracies. in the trainsition probabili-
tivs will be considerably-mitigated in the
integrations performed to obtain the cross
scctions-and rate coefficients, provided..
the probability has something like the
correct shape ncar its maximum,

Figure 8.29*H12(R21) function appropriate
to the ecalculation of Landau-Zener.
transition probabilities,

TABLE 8.1+ REACTION RATE COEFFICIENTS
AT “300 K — ATOMIC IONS, a(300 K)
IN 10~7 omM3/SEC

Theoretical

System .| Experimental

»
ow

H + " 3.9 ¢ 2.1
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o
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TABLE 8.2~ REACTION RATE COEFFICIENTS
AT 300 K — MOLECULAR IONS,

(300 K) IN 10~7 CM®/SEC ORIGINAL PAGE IS

OF POOR QUALITY

System Expcrimental | Theoretical
HY +D° | 4.7 %15 | 8.5% 2.1
NT 40" — 2,0 £ 0.6
NoT + 07 | 4.9 % 2.0 1.9 t 0.6
0F+0" | 1.0+ 0.4 1,9+ 0.5
Ni + 03 1,6 + 0.5 | 2.5 % 0.8
NoT +.07 | 5.8.#1.0.| 2.42%0.8
oF +.03 4,2 £ 1.3 2.4 £ 0.8

1.0 £ 0.1
Ni + N0z | 1.3.% 0.5 1.3 + 0.3
NoT + NOz| 5.1+ 1.5.| 1.2%0.3
2.1 % 0.6
1.75. % 0.6
of +N03 | 4.1 %1.3 .| 1.220.3_
NoT + NO3| 8.1 £ 2.3 1.1 + 0.3.
0.34 + 0.12
0F +NO3 | 1.3 £ 0.4 1.0 + 0.2

Thus, in spite of all.the uncertainties in the Landau-Zener method it does pro-
vide some useful results. It approaches the correct limits at both.very high and
very low velocity in a qualitative way, and is expected to .give the best quantitative
results near its maximum. It will be instructive to carry forward the single cross-
ing point transition probability to the. caleulation of cross section.and rate coeffi-
clent to find the functional forms predicted for these quantities.

8,7 .CROSS SECTIONS DERIVED FROM LANDAU-ZENER RESULTS

The quantity B8 . in Eq. (8.54) is just a constant, while the quantity o may be
expressed

. A —— A Pl A W e e P g

1 |de-d
¢ =+ 33 (d,, - H,,) (8.56)
r
c -
The derivative_(dr/dt) is obtained from the .classical equation of motion
2 V(rp) '
) a1 - (8.57)
dt'). r 2 — E
¢ . cr
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where r, 1s, of course, the crossing point internuclear distance and V(r.) is the
interaction potential at that point. The collision energy (mu?/2) is E and the
miss distance is b. In the straight-line trajectory approximation, V(r). is merely
set equal to zero...

The total collision transition probability may now be expressed.

2 \~1/2 _ 2 \~i/
Px,z(b"_‘) -2 exp[— {- (32 - rlc-;) ] 1 - exp[— {- (a2 z-}c-z-) 1] (8.58)

where the factor..y 1is a constant related to separation and slopes of the potential
functions at the crossing,

2ﬂH§2
Y = 3 (8.59)
higy (Ha2 - 'Hl,z)

Te

and the factor a is a function of initial velocity wu only

2V(rc)-

2 (8.60)
mu“

aznl—

The cross section 1s now obtained by integrating over the miss distance b.

Te are s \~1/2 2 \=1/2
S(u) = 21TJ. P,,b db = lmJ' \exp[— {- (32 - -3—2-) ] - exp[— Zul (82 = :b—z') ] bdb
c c
o .

o
(8.61)

a

The upper limit is the value of b where the collision just reaches the crossing
point. Now transform the variable of integration to

. b2 -1/2
y = ( - azrc2> R l <y<w (8.62)
dy = - -1-.(1 . )_3/2<‘2b db) -2 b ab (8.63)
2 azrcz azrcz azrcz
Then
S(u) = 4ma’r ? J- (e"Yy/au - e 2Yy/auy i%-
y
1/a
- 4na2rc2[E3 (L) - = (%}1] (8.64)
ORIGINAL PAGE IS
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U

e-xy
Eg(x) = = dy = x%r(-2,x) (8.65) .

1

and T(-2,x) 1s an incomplete gamma function. In the limit as x becomes very large
(ref, 12) .

e X 3,12
I"(-Z ,X) W -;;.(1 ---; + ;—2-—'- “ - 0)" (8_066)
Thus, at low velocities the cross section becomes
S(u) W_ 41ra2rc2 (é'YE) e-'Y/‘au ""'_' (8.67)

For very high velocities the transition probability is evaluated in the limit as
v/au becomes small .

. 2 —1‘/2 2 ..1/2
Frabe) =2 exp[-g;(l‘_- a;Drvz) ]{1 ) exp[_ = (1 "azbr 2) :”
- [

c

_ 2 b2 -1/3..............
(y/au)+0 .EYI (1 - alr 2) (8.68)
’ (o}

and the cross section then becomes

ar,
= 41y b db = X\ .2, 2 dx
§(w au J' / b2 \1/2 2n (au) 4 Te “1/2
o \19— 3 ) x

a'r

- (G5)et?

-5, (%) (8.69)

Note that in this limit the quantity a = (1 - Vc/E)"/g remains close to unity, and
that the cross section then varies as y-?! or E"/2, a result in disagreement with
experimental observation for most. reactions; the cross section generally decreases as
E"L for large collision energy. However, as we found in chapter II, this does not

influence the rate coefficient very much, as that quantity depends primarily on the
behavior of the cross section near threshold.

The rate coefficient_integral can be performed exactly for the high velocity
limit ¢ross section..

= a 2 = a
JORE NI
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. a oYX
L
L 1/2
; u._e(—-—sz) xllo
o m
o
(-]
S X 1/2 8 "
- USeY X el 2dx - (i) So (x - x*)l/a e~ X dx
\ s (2) VIR L
— X
| MOy TN
O

The rate. coefficient in this approximation is the cross section swept out by the
internucléar distance at the crossing point multiplied by the characteristic crossing
velocity vy, where .the probability of transition.is near. ‘its maximum, and by the :
Arrhenius factor exp(-x*).

i ) Problem 8.1: Show that Py, given by the LandauZencr method 1s a maximum and equal one-~half when the ¢rossing
: : velocdty 48 (¥/4n 2). What {8 .P,, when the crossing veloeity ia oxactly y?

Problem 8.2;. Consider a pure, homogencous gas composed of particles of mass-28 amu (atomic mass unit) which.have
Just two intoraction potentials betweun the particles, a ground. atate interaction U; and an_excited state Ug.

Uy A , A=100eV, o tall

Uy s BT, . Basev ., 8 =18, E eSSy

Assumé the perturbation futeraction at. the croasing point is Hyy = 0.1. eV,

- . et N 2
y 4) Find the crossing point v, in R, the activation energy ER  in oV, and the cross sedtion coefficient S5 = dnry
\ in em®, Graphical solution or .succésaive approximation may be used.

b).Find the temperature T LK wheré the.mean gas. velocity 4 .equals y.

¢) What is the threshold velocity, u* in ém/se¢ where the crossing point is just teached .in.head=on collision (b=0)7 —.

ot M |t e anvn s S R atcin AR ¢ Al Caimrires a

: . d) Caléulate and plot the transition probability for a single colliston _(d.¢., incoming and outgoing crossing at ¥y)
p for velocities from.0 to 208107 .em/sec,

&) Calculate tha éross section ratio §/5, . fiom both the low velocity limit formula and the-high velocity limit
formuia. How dd the veésults comparé? .

f) Calculate and plot thé vaté coéfdeiont o, glven by the hWigh velocity ldmit cross Wection, as.a function of T .
from 3OO ta 30,000 K.
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8,8 _CONCLUDING REMARKS

The .Landau-Zener method of evaluating transition probability at a potential curwv
crossing has been derived, and although the method is recognized to have a number of ~
deficiencies in.terms of the approximations involved, it gives results that agree
i reasonably well with experimental observations on a number.of charge exchange reac<
L tions that océur in atomi¢.ion collisions. The method has also been used for cases
of molecular ion collision charge transfer, where a more complex set. of ¢urve-¢rossing
transition points is involved. The cal¢ulations and experiment agree within factors.
of about 3, not too exciting from a.scientific viewpoint but .certainly adequate-for ,
some engineering applications. In general, the Landau-Zener transition seems. to
increase too rapidly near threshold, and falls off too slowly at high-collision
energy, as gE-1/2 rather than E™* as usually observed. Nevertheless, the transi-. y
tion probability goes to the.correct 1imits of zero at very low and high collision f
energies, and is expected to. be most accurate near the maximum.values wheré the E

|
I

largest. contributions to the cross section and rate coefficient integrals will occur.
Much of the inaccuracy in.the transition probability is mitigated in these integra=- .
tions, so the cross sections. and rate coefficients. are somewhat more réliable than

might at first be expected. from an analysis of iimitations in.the assumptions involvec ... | .

in the Landau-Zener method.
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CHAPTER IX CLASSICAL REACTION SYSTEMS ON A SINGLE POTENTIAL SURFACE .

1
5
b
;
t

& < ORIGINAL PAGE IS
! 9.1 SUMMARY
OF POOR QUALITY

f : The reactions thut occur exclusively on.a single potential surface are treated
o as a'system of ¢lassical.particles following the Hamilton equations of motion,

" Hamilton's equations can be integrated to any desired ‘degree of accuracy, but good
- approximations for the potential surface are not available in most cases, so this fact .
F has blocked the.full application of the method, except for a few illustrative examples \
that give some useful qualitative ideas about classical type reaction systems.

E Approximate potentials are developed assuming that the total potential is merely the

‘ superposition of two-electron exchange.terms, which are obtained by fitting experi-

? mental data.for two-body interactions; these are the LEPS (London-Eyring-Polyani-Sato)

prf potentials, which are found to be very sensitive to the approximations used to account.
|

:

E

?

;

{

: for the effects of two-electron overlap integrals. A still more empirical method .of
o obtaining potential surfaces is to. smoothly pilece together functions that are.known to
‘ £1t observed experimental vibrational spectra for the isolated two~body pairs; the
Ci.- O - O potential is cited as an example of this procedure and. the results. are used
to evaluate the probable activation energy and. temperature dependence of the
C20 + O + C% + 0, reaction-rate coefficient. 7 i

an 9.2 INTRODUCTION . | ;

e~ s

i‘ ‘ In chapter VIII the transitions that occur at the crossing or near-crossing of .

: two potential surfacec. were considered. If the perturbation interaction energy Hyo
is large there is very little probability of transition between the. lower state and
the upper state. The lower state of interest will generally be the lowest or ground —
state of electronic energy; the "ground state" is by definition that eigenstate that i
everywhere exhibits the lowest-lying electronic energy and therefore the lowest-lying '

e 5

e

- _ potential surface. This situation was diagrammed for a one-dimensional, two~-body type. ; i
F collision in figure 8.3(b).. In this case, the collision takes place adiabatically ) ]
i along the lowest lying potential surface, and transitions to the upper surface are. 80 i

: improbable they may be ignored. .. ; 1

A typical two-body ground state potential. that results from a crossing type of
interaction with a large coupling perturbation between two states with different elec~
tronic configuration, but with the same symmetry, is redrawn in figure 9.l.. The
widely removed excited potential surface is shown by the dashed line at. the top of the
figure. The position of the maximum in the potential at r, is approximately the
distance of the potential crossing r. considered in the last chapter. Two different .
states for the atomic pair exists in the sense that all situations with r >.xry or
with kinetic energy E > E; are-free states, whereas a bound diatomic state with
vibrational and rotational energy exists if r < ry and E < Ep. A ¢ollision that .
occurs with energy E < Ey can make a transition from the free state to the bound
state by the so-called 'quantum tunneling" -effect, The wave function, though it
decreases. in .an exponential manner. across the potential barrier where Ep > E, is
nevertheless finite on the other side of the barrier, and a finite transition proba-
bility results from collision, However, this quantum tunneling effeét is negligible
in most cases of practical interest in gas-phase. collisions; it becomes important
only where the potential barrier 1s extremely narrow, such as a thin oxide -layer
deposited on a metal or semiconductor surface. For our purposes here, it will be .
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: \ / adequate to treat such ¢ollisions classi-
s \ ,/ -EXCITED STATE cally and the-collisions with E .< By
; - ' merely cause scattering in this
approximation, . !

If .the. collision occurs with kinetic.
energy E > E;, the bound state configura-
tion has a short lifetime — for head-on.
collision thé duration is about one vibra-
tional period, but for a finite miss dis-
tance b, the two atoms may orbit one
another several times, particularly when E
is not much greater than Ep.. However, the !
result is unstable in time unless a third '
body takes part in the collision to carry
away fthe excess kinetic energy and drop the ..
atom pair into one of the stable bound

: rotational-vibrational states shown in
INTERMOLECULAR DISTANCE,.x figure 9.1, Thus, adiabatic potential sur-~
face trajectories lead to a recognizable_ or. -
interesting chemical-~like reaction only ¢
where three or more nuclear centers partici--— % ]

i

FRANT T TEE =R NI T L
+ . .

POTENTIAL U

. : Figure 9.1- Ground state potential sur--
face for two particle 2ollision with
a maximum produced by large inter-
active coupling between two states
with different electronic.configura-
tion but same.symmetry.

PRI 20 e P o

paté in the collision, and .the potential

surface becomes multidimensional. The

following discussion .will be concerned with

, those three particle reactions which can :

s ; be described with a single adiabatic potential surface; these are typically b
) association-~dissociation reactions such as

A+B+C%=AB+C (9.1) o
Q‘ and atom exchange reactions such as E :

A + BC == AB + C (9.2)

For these reactions the potential surface is three~dimensional. A possible set of.
coordinates is shown in figure 9.2(a): the three internuclear distances Rgps Ryes.

and Ry,. Other coordinate systems are of o
a Rab bRy ¢ course possible, such as the distances Rpe )

O O—O .and R.y being replaced by Rgy_. the dis- ;
tance from atom ¢ to the center of mass of. _ ‘;}
atoms A .and B; the spherical angle coordi-. 5 !
nates 6 and.y are then used.to give the |
direction of the R,y vector with respect . P
to the vector Rgp... Alternatively, an ii

. angle such as. ¢z could be used to Py

a) GENERAL 3-DIMENSIONAL . b} COLLINEAR replace R i 1

COLLISION CASE COLLISION CASE ac* .
Figure-9.2~ Coordinates for 3-body . Potential surfaces in three 6r more i
collision.. dimensions are hard to visualize, so typi-

cally the two-dimensional surface used to. o

describe a ¢ollinear collision, with coordinate. configuration as shown in fig- - .4
ure 9.2(b), 1s used to describe the dynamics of three~body reactive collision. One - !

should always bear in.mind that these collinear collisicns are atypical, and do not :
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duplicate all features of a typilcal or.average collision., With this caution in mind,
the two-dimensional potential surfaces. for collinear three-body collision can be use-
ful as alds to understanding and physical visualization of the problem.

The two-dimensional figure which was used to describe collision between two
particles with a spherical interaction potential, figure 9.1, exhibited a simple hump
or maximum which ¢an be related to the-activation energy. On the surface used.to
describe collinear collision between three particles, the hump becomes a three-
dimensional saddle point. The height of the saddle point is the activation energy,
and <he path of steepest descent (or maximum gradient) across the saddle point 1s
known as the reaction path. Physically, the reactlion path represents a kind of aver- -
age of the most. probable trajectories leading to reaction. The path of maximum posi-
tive curvature at the saddle point is orthogonal to the reaction path, and the curva-
ture of this path is a measure of the width of the saddle point. The width and height
of the saddlé point. are the most important parameters to duplicate in any approximate
potential surface used to. assess the rate coefficient. When the collision 1s not
collinear, the.potential is a function of three independent variables and the saddle
point in the potential bz¢omes a four-dimensional figure. One may visualize this
situation by thinking of the three~dimensional saddle point with a barrier height and
thickness along the reaction path and width at the pass which continually change as a
function of the fourth independent coordinate, which might be the angle ¢zpc shown
in figure 9.2(a), for example. The trajectories over this surface are computed
numerically, and .in this case the lack of a visualizable model is not. a handicap to
the computér; the only limit on the number of nuclear centérs and.therefore on the
number of dimensions that can be involved is the practical one of available computer i -
speed, size, and calculation cost. . 1 :

The reaction-rate problem is solved in three steps. First, the adiabatic.poten- - -
tial must bé determined either approximately or with more exact quantum wave-function . fl
expansions; the barrier height and width parameters should be most closely duplicated.. 5
Next a multiplicity of trajectorieés over this surface are calculated, starting from ;%
guitably weighted initial conditions. A statistical determination of the fraction of L
collisions which lead to chemical reaction for a given miss distance and velocity is ;w
then computed and used as the value of the transition probability in the cross- /%
section integral, Finally, the reaction-rate coefficient is a Boltzmann~averaged :
cross section, just as discussed in previous chapters.

9.3 ADIABATIC POTENTIAL SURFACES

The really crucial part of the adiabatic reaction-rate problem is the determina-
tion of the potential surface with sufficient accuracy. Once this is done,_ the
numerical solutions of collision trajectories and the statistical averaging procedures
may be tedious and time consuming on.the computer, but they are relatively straight-
forward and can be performed.to any required degree of accuracy. Unfortunately, very
few potential surfaces are known accurately at the present time, even with modern
quantum chemistry computing methods available. Thus, approximations are widely used
and are usually based on the methods for. approximating potential surfaces developed..
by London, Eyring, and Polyani (ref. 1). These approximate potentials are called .. .. ..
LEP potentials. Sato (ref. 2) introduced a semi-empirical correctidn for the LEP
potential which.allows the model potential, called the LEPS potential, to better fit
experimental results and also provides a smoother potential surface that 1s believed
to be more realistic. However, it should be kept in mind that none of these potential
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surfaces are truly preciase, Parr and Truhlar (vef. 3) have given a critical rveview

of tha LEPS type potentials and point out that the calculated reaction barrier

heights are pathologlcally oversensitive to the approximations used. This occurs
bacause the final potential is a balance of very large repulsive and attractive (posi-
tive and negative) integrals. Thus, even though.the aseparate integrals can be
obtalnad quite accurately by modern quantum calculations, the final balance 1s very
gensitive to residual uncertainties, .

In spite Oof its defects, the LEPS~type potential has been very useful in eval- -

uating the nature and the functional form Of potential for adiabatic c¢ollision type
reaction, Often the coefficients in the semi~empirical Sato type approximation can be
adjusted to give reasonably satisfactory agreement with experiment. For this reason,

the derivation of the potential for a simple three-clectron system will be followed to .

1llustrate the general method.. This 1s precisely the potential needed for a three~
body hydrogen exchange reaction

Hﬂ<+ HbBC > HaHb,+ Hc , (9.3)

and is similar to the potentials used for hydrogen halides. Electronically, the
ground state of the seven electron.outer shell of the halogen behaves something
like a single electron,

The starting approximation is the.idssumption that all three-center interaction.
integrals are negligible compared with the two-center integrals. This is indeed gen=
erally true, but since the final result is the difference between competing positive.
and negative terms, it is not certain.that neglect of three-cénter intéraction inté-
grals 1§ quantitatively.justifiable. No doubt, the reason the approximation works as
well .as 1t does is bécausé thé positive and negative three-ceénteér téerms also. -tend. to-
neutralize oné another. At any rate, the approximation.is very appealing because the
two-center interactions are known quite accurately in many cases from experimental
spectroscopy, and these interactions can now bé calculated with about équal précision.

Thus, we coasidcér. first the cnergy of a two-cénter, two-électron system with exchange,

and subsequéntly sum all thé two-center intéractions to get a total. poténtial for a
three=, four=, or_more body system.

9.4 TWO=CENTER, 1WO~ELECTRON SYSTEM POTENTIALS

The contribution of spin moméntum to eénérgy will be.neglected for.SYStems of._
light atoms; then the Hamiltonian operator can bé simply.expressed as a function of’
only the spatial coordinates of electrons 1 and 2 and of theé two nuclear centers a

and b, Where the two nuclear centers are hydrogen, the Hamiltonian operator becomes

om0, 40, + 0t s (9.4)
. ¢ R
ab
where ﬂi 1s an operator. tnvolving coordinates of .clectron 1 only and H' 15 an
operator fnvolving coordinates of both eleétrons. TFor example
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t ' is one possible grouping of the operator terms. The energies are given in Hartrees

? : (ezlao) and the distances Ryj between particles. 1 and j are given in Bohr units

F~ : (ay). The distance- Rgp between nuclear centers 1s treated as a constant in the

E’ ' Born-Oppenheimer approximation, where the nuclear motions are regarded as fixed com- - -~

J pared with the very rapid electron motions. Thus, the term 1/Rgp can be separated

! , from the rest of the Hamiltonian and simply added again to the final energy to

' account for the repulsion between nuclear centers; there is no need to complicate

i the calculations by carrying this term through all the wave function integrals. The
problem is to determine with perturbation methods the total energy for each value of

R,y selected.

2 5 A logical expansion of the wave.function ¢ would be in eigenfunctions of the
' operators H; and H,

fi,o(1) = E o(1)
19 0! } 9.6)

Ha¢(2) = Egé(2).

: : where the function ¢(i) is just the ground-state eigenfunction for ‘the i} ion in

i : the coordinates of electron 1. and E, is the corresponding energy; E, 1s known
oo very accurately as a function of Rap for the H7 ion. and very good analytic approxi-
mations.for the wave function of this ilon are known. This expansion would constitute
a full molecular orbital (MO) treatment for the H; molecule. . However, a linear .com-
bination of atomic orbitals (LCAO approximation) is found to give a much better
result. than the MO. treatment, so it is more common to group the operator.terms as a .
series.of "atomic Hamiltonian operators (refs. 4-6). Slater's text (ref. 6), for —
example, breaks down the Hamiltonian in a different but totally equivalent form

2
LLn |
8
2 f
fi, = - %; - L ‘ (9.5a) ?
. '
5 1 1 1 1
H'= + - - o——
Riz Ry Rb1 Ra2 )

Note that the constant term. 1/Ry, has been carried along as part of the perturba-
tion H'. )
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E’ At this point some form must be chosen for the wave function, and we should keep

" in mind that any form chosen is necessarily an approximation; therefore, the. resulting
potential is alsc only an approximation., A rather good approximation for the H; ion
eigenfunction has the form

“ ¢y = u (1) + v (1) (9.7)

i
|
y where ug(i) is a function of the coordinates of electron 1 centered on atom a,

; and up(i) is the same function centered on atom b. The function ¢4 is then a

P molecular orbital, and the product of ¢,;¢, gives a full molecular orbital form for
{ the wave function .

. b=ty = (Du (2) + u (Dug(2) + u (1D, (2) + uy (D @) (9.8)

However, this wave function is found not to give good results, because the third and
fourth terms in this sum have both electrons about the same center, and these really
represent the higher emergy ionic state H'H rather than the ground state of H2 which
we seek. London found that a much better wave function was obtained by dropping
these terms, and most of the modern development of molecular wave functions has o
3 concentrated on the LCAO form.

by = (D () + w, (D (2) (5.9a)

RaRa ke

4 Since this ground-state wave function 1s symmetrical with respect to the spatial
coordinetes, the spin eigenfunction for the two electrons involved must be asymmetric,
in order. to satisfy the Pauli principle that the total wave function be asymmetric
with respect to exchange of any two electrons. Thus, the spins are paired, with a
total spin of zero, and the function 1y 1s a singlet. We will also be concerned
with the triplet wave function %y that results when the spin eigenfunction is sym-
metric, that is, the spins are said to be unpaired and the total spin is one; in this
case_the_function must_be spatially asymmetric. to satisfy the Pauli principle

o= u (Du (2) - uy (Du ) (9.9b)

Lk g

TR

(R S e Sy

The exact nature of the functions u, and up has not been specified. However,
we are merely concerned now with the functional form of the potential, not with the
numerical results of calculations (which are still somewhat approximate); we want to.
fit this form to experimental two-body interaction potentials, and-then use these
results to deduce the multibody potential. . ! 1

o St s e PR

Using the relations of Eq. (9.6), one obtains ?

fy = B, + 8D [u (D () 2w Du, ] (9.10)

i
1

where the (+) sign represents the singlet state and the (-) sign represents the
triplet.

The value of E, represents the lowest energy for ﬁ1 ana H, operating on the
functions ¢, and ¢,. The integrated value of ¢*° is needed for normalization; that
is, the integrated probability of the system over all possible electron configurations
must be unity. Lf the functions u, and up are normalized
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- ¥?) = (uRui()) ¢ 2 (uy(Duy (D, @)uy () + (ui @) =201 £ 8%
‘ ‘ (9.11)

3 { where S is defined as the overlap integral

s = (u W) = (3,@u,@) (9.12)

? To obtain the average total energy of the system given by this wave functiom,
‘ multiply Eq. (9.10) by v, integrate over both electron spaces, and divide by the

f normalization constant

pa OO op o K d 4 (9.13)

W 12s% 1&s*] Ry
where the Coulomb integral K and the exchange integral J are defined, respec-
tively; by
L '
-
K = (u2(DR'(2) (9.14)
. 3-- <ua(1)tij&1)ﬁ',ua(2)ub(2)> | (2.15)

The signs of K and_J _are chosen so that both are normally positive quantities..

The Coulomb integral derives its name -because in the atomic structure problem,

where the perturbation is simply (1/R;;), this integral represents the average
Coulomb repulsion between the chargg,distribution ug(l) and the charge distribution
u§(2).- In the present case where. ' may contain other terms, the interpretation is
not so physically simple; however, the name "Coulomb integral" is retained for any
integral of this type. The exchange integral derives its name because these terms

: , appear in. the energy only when the form chosen for the wave function gives equal

3 probability to all configurations where two identical .electrons are exchanged, as in

X Eqs. (9.9a.and b).. The exchange terms are necessary to theoretically model the

: ‘ observed splitting between states with different total electron spins, in this case

F the difference between singlet and triplet energy levels.

; Perhaps the simplest choice for uy and up that qualitatively duplicates the
‘ features of the H, potential is two. hydrogen-like wave functions with variational

4 parameter- Z’

1/2

NRIGIMAL PAGE IS 8l (2)
O POOR QUALITY IRVOR. (9.16)
u,(3) = ('1?) e

In this approximation E, =.-22/2 and the. integrals §, K, and J ¢an.all be per-
formed analytically. (See, for -example, Slater's text "Quantum Theory of Molecules
and Solids (ref. 6).) Note that Slater's nomenclature is somewhat different than
used here; the energy units are in Rydbergs or (e®/2a5), and J. 1is used for. Coulomb
integral and K for exchange integral. In Slater's.notation, our. K = Hy -~ (2/R)
or 2J +J' while our (-J) = H; - (28?/R) or 2KS + K'.
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The H: potential calculated using the
— EXACT functions of Eq. (9.16) is shown in fig-
«=e MORSE FUNCTION ure 9.3 as the LCAO approximation with
variable Z. The exact potential is shown
by the solid line, and one can see that
the approximate wmodel potential does have
the correct qualitative shape with the
minimum at the proper distance,
Rgp ~ 0.74 &, but the potential minimum is
about 15 Kcal/mol above the correct value.
A slightly better result can be obtained
using polarized wave functions (for exam-
ple, mixing some p-orbitals with the
s-orbitals) but the only way the model can
closely approach the true potential 1s when
it includes terms in R, which correlate.
electron positions such that the two elec-
trons tend to avoid one another; this .enor- i
mously complicates the algebra of the
problem.

=. LCAO APPROXIMATION
VARIABLE 2

'8”

2

POTENTIAL, Kcal/mol

0

Rab ‘A

Figure 9.3- Hz potential functionms. For the purpose of computing three-
body interaction potentials, it is con-
venient to use experimentally determined Morse potentials which fit both the observed .
vibrational energy levels near the bottom of the potential, and the observed dis-
sociation energy. For the singlet state then the Morse function approximation, with
the totally dissociated state taken as the zero energy level, is

- ek .
k.

sk

U, = D™ -2 ™) (9.17)

L SR RN

i,

: where x = (hw/2D)1/2(: - ra), v 1s the vibrational ¢ircular frequency, r 1is dis-
. tance between atoms (i.e., Ryp) and 1. 1is the equilibrium value of r at the .
potential minimum. Sato (ref. 2) noted that the triplet state potential is
approximately

e

Ugx J @™ 42e™ (9.18)

PR SRR

These Morse potentials are shown in figure 9.3 and one sees that they are reasonably
good approximations; the singlet potential U, approaches its asymptotic value a

little too slowly as R,, is increased, whereas the triplet potential U; becomes :
somewhat too large at. small values of  Ryp. | o

At large separation (large R,,) the overlap integral is very small, and to a
first approximation S has often been negiected; the form of the potential given by
Eq. (9.13) is then expressed

U, =Qq-1J . (9.19).

Uy =Q+J (9.20)

s daliall . o mdi  oem m Tat n am

where Q represents 2E, + K + (1/Rgp). If we now equate (9.17) and (9.19) and also
(9.18) and (9.20), the expressions for Q and J which correspond with the Morse
potential are
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3 == . g ™) (9.22)

However, these potentials are found not to duplicate experimental activation
energies very well, and sometimes lead to strange looking humps and ridges in three-
body potential surfaces. Sato (ref. 2) proposed that the trouble was primarily due
to the neglect of the overlap integral, and he corrected this in an approximate, semi--
empirical way but letting S2 be a constant value chosen to best fit the experimental

observations. -

U, = Igf_i? - p(e‘“‘ -2 (9.23)
U, = 13:*-8-; =2 +2 e™) | (9.24)
Solving for Q and J we obtain.
Q =% Be*-2e+ %-D- (e** -6 (9.25)
J= % (6 e - e %)y +.%9 2e -3 e ?%) | (9.26)

The quantity S% is denoted by k in Sato's papers; values of s2 the order of 0.2
seem to give reasonable results for the Hj interaction, but this value changes for
other systems. Note that Sato's correction Ls still an approximation; the real values
of $2 are not constant but vary from.0 at large Ryp to 1 at vanishing Rgp.

Potentials involving heavier atoms than hydrogen are treated in the same way; the
Morse- function potentials are available for.many diatomic pairs, and in any case
modern computational quantum methods can be used to obtain two-body potentials quite
accurately., Halogens can be treated in a manner similar to the hydrogens because the
7 electron shell behaves electronically much like a single (ls) electron; two ground
state atoms combine to give a singlet attractive state and a. triplet repulsive state,
Atoms like oxygen and nitrogen are somewhat different; as they approach another atom
the electron spins can add up in a number of different ways, leading to a multiplicity
of potential interaction surfaces (see Meador (ref..7), e.g.). However, as an
empirical stratagem these atoms have sometimes been treated by the same formalism.

9.5 MULTIPLE-ATOM POTENTIALS

London (ref. 8) developed the expression for multiple atom interactions using
the approximation that all multiple center integrals could be neglected in comparison
with the two-center integrals; in other words, the total potential is simply the
linear sum of two-electron interactions. One can indeed argue that these multiple
center integrals are much smaller than the two-center integrals; however, as we have
seen, the final potential is the resulting balance of large positive and negative
integrals, so the influence of these smaller three-center integrals could be
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significant, London's approximation is valid to the extent that these three-center
integrals are alsc a series of both positive and negative values. that will balance out
to a much smaller residual, just as the two-center integrals do. London's model
allows the electrons to interchange between all the different pair bonds with equal
probability., London works out the equation for. a four-electron, four-center system;
for the system of three H-like atoms of present interest, this reduces to:

“abe " %ab ¥ et %ea 7 71-2‘ [y = Tpd? + Wae = Jpd? + Gg = Jab)2]1/2(9'27)

where the values of Qij and Ji% caa be . obtained from the Morse potcntials for the.
diatomic pairs as outlined in the previous section. The differences between the
exchange integrals . Ji35 occur because in a three-electron system, two of the electrons
must have the same spin while the third electron will have opposed spin (at least in
the ground state configuration), so each electron must have a bond pairing with one of
the remaining electrons, and an.antibond pairing with the other, as .shown in Eq. (9.27)..

Eyring and Polyani based their LEP potentials on Eq. (9.27) using values of Qi3
and Jij derived from the Morse functions by neglecting the overlap integral s2, "
These potentials typically do not give a reasonable value of the potential barrier .
height according to the experimentally known activation energies for reaction. Thus, ;
Sato (ref. 2) was led to modify this equation with an empirical constant k, which.
represents a sort of average of all the overlap integrals (Sgb, Sﬁc, S;c) at the
distances where the reaction barrier exits. j

PP S SRy P SR >

S S P . 1 2 2 2,1/2|"
Eabc_: 1 + k.{Qab Qe * Qe = 2 [(Jab "Jac) + (ch - Jba) + Uea - Jcb) ] '}

(9.278)

In the present treatment, we introduce this correction in the evaluation of the
Qij and the Jij as shown in Egs. (9.25) and (9.26), so we automatically get Sato's
result using these values in Eq. (9.27).

To illustrate these .potentials, some calculations for H-H-H potentials are shown
in the potential contour plots of figures 9.4(a), (b), (¢), and (d). Figure 9.4(a) !
shows the LEP potential, which is obtained when §¢ = 0, for a collinear configura--
tion. The reference level of potential has here been adjusted so that the H, molecule
has zero potential at the bottom of its well. Thus, when R; = 0.74 8 and R, + =, i
U = 51.6 Kcal/mol, the.energy of the free H atom, or one-half.the dissociation energy
of H,.» The same value occurs when R; +-« and R, = 0.74 &, of course. When both —
R; and R, become large, the potential is a broad level plane with the energy of
three separate H atoms, i.e., 154.8 Kcal/mol. Between the two valleys is a barrier .
opposing the exchange of one H atom for another in the triatomic collision. This
barrier is 22.1 Kcal/mol, much too high to agree with the experimental value of
activation energy, which is 7.5 £ 1 Kcal/mol (ref. 9).

Figure 9.4(b) shows the potential .when S§2 = 0,1 4is chosen. The barrier height
has been reduced to 12 Kcal/mol, still too high to agree with experimental activation
energy. Figure 9.4(c) shows the results when s2 = 0,2, Now the barrier height is
2.8 Kecal/mol, which is perhaps a little too low. The activation energy is actually
larger than this barrier height because collisions are not. collinear in general, and
the activation energy is an average.of the minimum energy required for collisions
occurring at all angles, which lead the system from one valley across the barrier to
the next valley. The barrier height increases as the angle of incidence ‘is increased;

Dllw .
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(a) sS?2 =0, 6 = 180°, (b) 8% = 0.1, 6 = 180°,

Figure 9.4~ H; potential.

ﬁ ag figure 9.4(d) shows, the barrier height with S% = 0.2 has increased to ! '
' 20.2 Keal/mol at 90° angle., Practically no atom exchanges will occur at normal tem- ¥
peratures with this large a barrier; the reaction will occur only-for configurations :
L clustered in a small cone around 6 = 180°. However, the effective activation energy
will be.a statistical average of the reactions that. do occur within this cone of
angles. Sato? concludes that . s2 = 0.18, with a collinear barrier about 5.4 Kcal/mol
gives a reasonable fit to the experimental evidence. !
L
4
1

9.6 DYNAMICS OF ADIABATIC CHEMICAL REACTION

The .dynamics of the -three-body hydrogen exchange reaction have been analyzed by
Karplus, Porter, and Sharma leading to values for ‘the reaction cross section and the
rate coefficient (ref. 10). A more typical reaction, because it is exothermic, is the :
collision-induced exchange of F for one of the hydrogens in H: ‘ 1

F+ Hz » HF £ H (9.28)

The dynamics for this reaction have been worked out by Jaffe -and Anderson (ref. 11), |
with some follow-on analysis by Jaffe, Henry, and Anderson (ref. 12). The potential g ’
energy surface for a collinear collision configuration is shown in figure 9.5; a 1
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typical trajectory between the reactant and product atates calculated by Jaffe

(ref. 12) is also shown on the figure. The trajectory calculation is a atep by atep
numerical solution of Hamilton's canonical equations of motion in which the deriva-
tives of ‘the Hamiltonian with respect to coordinates are calculated using the analyti-
cal approximation for the potential given by Eqs. 9.27, 9.21, and 9.22. (The Sato
correction was not used here.) The derivatives of the Hamiltonian with respect to the
conjugate momenta are very simple analytic functions, namely p/u, where u is the
appropriate reduced mass. The angle between the coordinate axii in figure 9.5 has
been chosen to give the vibrational displacements a direction normal to the coordi-

nates that results when the cross product terms in kinetic energy are eliminated by
coordinate transformation,

T = Ry + uREL + ugRpRee + w4 3 (9.29)

This transformation i8 used merely to help us visualize the motion on the potential
surface more realisticually; the computer really doesn't care what coordinate system

1s used. ORIGINAL PAGE IS
OF POOR. QUALITY

The initial coordinates for the F + H:; interaction are illustrated in figure 9.6,
The fluorine atom is given an initial momentum P relative to the center of mass of .
the H2 molecule with an impact parameter (miss distance) b; the latter plus the
initial rotational energy of the H; establishes .
the total angular momentum.of the system. The -
initial position of the H: molecule is speci-
fied by any two of .the direction cosines, a, B8,.
>Xr Y. Alternate coordinated systems are. pos- -
sible, of course. Hamilton's equations.of
notion .are then integrated step by step to
dbtain the trajectory of the system over the
>otential surface, subject to. the constraints
that both total energy and total angular momen- -
-um.are conserved. A fixed numerical step size

ls-not very efficient; one desires to use as. Figure 9.6- Initial coordinates for
(ew steps as possible to hasten the integra- calculation 6f fluorine,
:ion, but a small enough step size to ensure hydrogen-molecule.dynamics. .

lccuracy. Thus, the step size should be chosen
:0 vary inversely with the potential surface gradient. Various algorithms for non-

linear extrapolation are helpful in increasing the step size that _can be tolerated
‘or a.given accuracy.

The initial momentum P, the impact parameter b, the initial vibrational and
rotational quantum numbers v and .J of the Hy molecule, are typically chosen by a
random number generator, and the trajectory that results is then weighted by the
Jroper. temperature-dependent statistical probability parameter p; Py v, and J are
veighted according to the Maxwell-Boltzmann distribution, while b is weighted as
»* to give equal probability per unit cross_section area

C=[pey 0 - ,
pab? =[BT /2utvh+BI(J+1) /KT | 2 =(E+Ev) /KT (9.30)

vhere E 1s the translational energy of the system, and E,; 4is the vibration-
rotation energy of the Hx molecule.__The miss distance b is constrained to some.
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maximum value bpgy = (8/m)*/?, where S ia the total collision cross section dis-
cussed in earlier chapters. Also, P, v, and J are usually restricted to some maxi-
mum value that i1s very improbable at the temperatures of interest; often v and J
are fixed at a glven value so the results obtained apply to a single initial state
of the H2 molecule.

Each trajectory calculated can be either reactive (HF + H or F + H + H are
formed) or nonreactive (F and H: remain stable). For exothermic reactions the heat
of reaction channeled into HF vibration and rotation can be determined by an analysis
of the final coordinates and momenta. obtained. The total reaction cross section is
given, for fixed values of initial translational energy E and rotation-vibration
state v, J

5 Nr(Eﬂ’ »J)
Sr = lim nbm NEVT (9.31)

N+ |

where N is the total number of trajectories calculated and N, is the number that
are reactive. These cross sections are then substituted in the usual collision theory
expression to compute the rate constant o(T). .

- —1/af 2 \3¥/? ~Ey 1/KT ~E/KT
a(T) = Qy(mup y.) 1/2(R—T) (;I(ZJ + e v/ )J’Sr e g ar  (9.32)

where Q7 is the vibration rotation partition function of Hjz.

Typically, to get a good statistical average cross section §, one must calcu-
late the order of 500 trajectories for each set of initial E, v, and J; then one must
calculate enough values for S to obtain.a decent integral over the energles in
Eq. (9.32) for the rate coefficient a(T). This all adds up to a large amount of
computer time, so one can appreciate that the effort becomes worthwhile only when some
reasonably reliable estimates for the .potential. surface are found.

Because of the large amount of computer time required, there is a search for
schemes that may shorten this approach. In particular, one would like to avoid com-
puting all the nonreactive trajectories and concentrate only 6n those initial condi-
tions that lead to reaction, and then the reaction probability is the ratio of .the
number of these initial conditions to the total number of all possible initial condi-
tions, a ratio which can again be determined by statistical weighting. One method of .
doing this is to consider the system in phase space with the Gibbs canonical distri-
bution of phase, then assume a surface which divides phase space into '"reactant' and
"product" regions. If the system consists of N atoms, phase space has 6N-6 degrees
of freedom (3-coordinates and 3-conjugate momenta for each atom less the 3 coordinates
and 3-momenta describing the center of mass) and the dividing surface is (6N-7)
dimensional. (In the case of the present three~body F + H, reaction,.phase space has

12 degrees of freedom and the dividing surface is ll-dimensional). A schematic repre- |

sentation of this phase space and the dividing surface S 1s shown in figure 9.7.
Each reactive trajectory must cross S at least once, so we can choose initial con-
ditions close to S and with the proper trajectory to assure that the system will
cross, The problem is that many nonreactive systems may also cross §S; these will
then double back and recross the surface to end up on .the reactant side. Also, some
reactive systems may cross more than once. Thus, the phase space-sampling method.can
only provide an upper bound on the rate constant, and the trick is to attempt to -
devise surfaces S that will minimize this upper bound.
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Figure 9.7- Schematic representation of a (6N-6) dimensional phase space with
(6N-7) dimensional surface dividing reactants from products.

The phase space sampling approach to the calculation of reaction rates was first
outlined by Wigner (ref. 13) as long ago as 1937, but the development of the modern
numerical computer was required to really make use of the method quantitatively. To
summarize Wigner's method, the reaction rate in the forward direction .for a two~body
collision, for example, is the number of systems crossing the surface S in one
direction per unit time, provided that the .surface is chosen so no system crosses
more than once. The forward rate constant for the three-body system is

=(dn,/dt) -(dn,/dt) =(dn,/dt)

o =

(9.33)

3
n;n,n, n)n,n, nyn,n,

where n;, np, and n3 are the number density of molecules of type 1, 2, and 3,
respectively, and (dnj/dt) are the number of atoms of type i used up each second by
reaction, or in other words the probability that a single system will cross the sur-
face S in unit time multiplied by the total number of systems per unit volume. All
atoms are assumed to stay in the ground state of elactronic excitation and the
nuclear motions are assumed classical. Wigner chooses a trial surface where the
energy H, of the product molecule is a constant, namely, the dissociation energy of
the molecule. This surface is, in general, a function of all the coordinates q4

and their conjugate momenta Pi»

PRSP .

H, = n°<pi,qi) (9.34)
|
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Mo Mo 244 + Mo 2Py (9. 34a)
at 5q; 9t T %p, Bt

Thus, the time derivative can be expressed

If H represents the total Hamiltonian

A S oH
d mgp e PLT Ty (9.35).

Thus, Eq. (9.34) can be expressed
fg__v E (aHo 3H_ _ al‘Io BH)
dt - aqi api api aqi'

z: SH O(H~-H ) OH_ A(H - H)
- [¢] [¢] - o (o] (9.36)
- 3 %y %Py %9y

Those systems cross.the H surface per unit time which are closer than
(dHo/dt)/|grad Ho| 1f (dH,/dt) is less than zero. At equilibrium, the density of
systems in phase space is the Gibb's canonical distribution

p = o (U=H) /KT (9.37)

so the probability of ‘finding the system in a given volume element of phase space is
proportional to. exp(-H/KT). Then the .number.of systems which disappear per unit

time is

(9.38)

n,n,n .dﬁo/dt e_ﬁlkT do .
(dni) 1%2%3 J Tgrad Hol
- -H/k
f"f ! T dpy oo . dq

where do 1is an element of the surface H, and the.integral is restricted to the
portion where (dHy/dt) < 0. The denominator is just the classical partition function
Q, and the ratio of the two integrals is the probability that the system finds {itself
in that region of phase space where it will cross the H, surface in unit time.
Comparing Egs. (9.33) and (9.38), one obtains an expression for the rate coefficient.

(dH_/dt)
1 0 -H/kT
o=z e do (9.39)
Q f grad H [
(dH, /dt)<0 | o
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At this point Wigner defines the integral I(E) OF POOR QUALITY
dH
I(E) = - fff—;g’- e /KT 4q. dq, dqq v . (9.40)
H°<E

and further stipulates that the coordinate system qi be rotated so that q, is
normal to the surface and orthogonal to the remaining qq lying in the surface H,.
Thus

dH
dq, = E;;g"ﬁ; (9.41)
and Eq. (9.40) can be expressed _
-dH_/dt (/e )
I(E) = grad " do dH, (9.42)

The derivative of 1(E) with respect to E is just the inner integral of Eq. (9.42)

dH_/dt
L ‘ o -Hqy /KT
dE gradmﬁa,é ) do (9.43)

If the surface integral is limited to that part where (dHy/dt) < 0 and is evaluated
at E = 0, the rate coefficient of Eq. (9.39) can be expressed.

9-139‘2) (9.44)
: E=0

o =

Q.

The dissociation energy H, 1s.given in terms of the phase-space coordinates of
the product molecule

2
Hy = 5=+ v (r) (5.43)

where r .is the distance between the two atoms of the molecule, p is ihe momentum

of these two atoms relative to their center of mass, and V,(r) is the unperturbed
vibrational potential energy of this molecule, in other words H, is just the minimum
total rotation-vibration energy of a dissociating product molecule when the collision
partner is far away. This is obviously a surface which must be crossed by every
associating system, but of course this surface may be recrossed again before the per-
turbing collision partner is out of range. The difference between the total energy
and H, is then

p2 ) p2‘ |
Hoo By o= gg + 5+ (V= V) (9.46)

where M. is the total mass of the system and P is the momentum of the center of
mass, p; 48 the momentum of the collision partner relative to the center of mass of
the associating pair and u _1is the reduced mass for this collision, and finally
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(V - V5) 18 the potential perturbation felt by the associating pair upon approach of
the collision partner, Thus, the derivatives of H, and H - H, are

k\ 3H 3H

[N )

->
‘ 2 S al
A\ —= m grad V . — .
T q . ° %
: 9(H - Ho) o(H ~ Ho)
: ——— =0 —————— = grad(V = V)
- op 3q :

and all other derivatives of H, vanish. Note that each of these vector derivatives
corresponds to three terms in the Poisson bracket expression for (3H,/dt), Eq. (9.36).

dﬂo E. 'L
Tl m»grad(v - Vo) (9.47) .

A The integrations can be carried forward analytically for this simple choice of

3 Hy, and Keck has refined this somewhat by choosing a surface that takes into account

; the rotational barrier and also requires that the collision partner come within a

: certain distance of the associating pair; Keck uses this latter distance as.a varia-
tional parameter to minimize the recombination rate coefficient. However, the choice
of surfaces which can be handled analytically is rather limited, whereas we need not
bother to find the optimum surface for the computer calculations; a simple surface.
like Wigner's choice of H, will suffice because the computer can count the number of
systems that recross this surface and then correct the calculated crossing rate. This
means, of course, that the trajectory must be computed until it is far enough from the
surface that there exists a negligible probability the system will return and recross { 3
the surface., Note that the trajectories starting at S must also be followed back- ‘ ;
ward in time, to make sure whether the system has not already crossed the dividing

; surface. In practice, this is not a difficult choice to program into the computer;

{ ! the collision partner is merely required to recede from the associated pair and be at
: . a distance where it perturbs the system negligibly.. Thus, the advantage of the phase
F ’ space-sampling scheme is that a. reasonable choice of surface § will assure that

:

most of the systems sampled will be reactive, and the system trajectory in phase
space need be followed a relatively short distance, both of which greatly reduce the
computing time required. The disadvantage of this approach is that the sample chosen
will not correspond to any given initial state; however the sample should correspond
to a Boltzmann distribution of initial systems since the Gibb's distribution in ,
phase, Eq. (9.37), is used as. a weighting factor. _ i

9.7 NONHYDROGEN LIKE POTENTIALS

|
Not all potentials can be well described by the LEPS model, which has been !
derived for the case where all the atom pairs in the system interact something like
two H atoms. Halogens can be treated by the LEPS model because the 7-electron shell f
behaves electronically like a one-electron system; this means that only one bonding
potential and one antibonding potential (the singlet and triplet potentials, {
respectively) occurs for this case, and these can be described by the Ldndon
formula in terms of integrals like K and J. However, when one treats systems ‘ ]
{

with atoms like O, N, C, S, etc., the situation grows more complex. These multiple
electron systems interact along a multiplicity of potential surfaces depending upon
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how the electron spin vectors add up. For example, two N atoms in the ground state
have 3 p electrons each and can interact along four different potential surfaces, the
1y, 95, 57, and ’% potentials. Meador (ref. 7) treats these with a London-like model
in which the exchange integrals for the p electrons are allowed to take all possible
combinations of pairing. In the case of O atoms, with four p-electrons each, the
multiplicity of interaction potentials increases to 32, Also in systems where
p-orbitals are occupled, these orbitals have directional characteristics and the mini-
mum potentials generally occur in bent configurations rather than the linear configur-
ation obtained for purely s-orbital electrons. These complications add to the
uncertainty of the model potentials, so typically the potential surfaces are then
—generated by taking the spectroscopically observed interactions for all the atom
pairs in isolation, and for the multiatom system also if it 1is stable, and fit these
reglons together with empirical smoothing functions. A case in point is the reaction

CR0 + 0 » CL + 0, (9.48)

treated in this way by Jaffe (ref. 14). This reaction is thought to be an important
step in the chlorine-catalyzed destruction.of 03 in the earth's upper atmosphere.. The
measured reaction rates were conflicting at the time of Jaffe's paper; some upper
atmosphere scientists had been led to conclude that the rate coefficient for

- ~~Eq. (9.48) had no temperatuie dependence whatever, which is clearly unreasonable in
view of the fact that a T*/? dependence must remain due to the collision rate
between gas particles, even if there 1s no activation energy whatsoever (unless the
cross section for reaction should decrease with increasing collision energy at the
threshold of the reaction, which is an unlikely phenomenon). Jaffe's calculations
were performed to help resolve this inconsistency, using an empirical potential energy
surface constructed to fit experimental data for C%0, 0,, and C20, molecules. Then
smoothing functions used to join one potential region to the others allowed for a
variation in the reaction barrier height, so this was systematically varied to give
reasonable agreement with data. The usefulness of the calculation model lies in the
fact that once its activation energy has been calibrated with experiment, it.can then
be used to get a probable temperature variation for the rate coefficient. .

Figures 9.8(a), (b), and (c) show the smoothed potential surfaces used by Jaffe

D for the reactions of Eq. (9.48) for three different configurations representing the

angles o between the vectors R (C2 - 0)-and R (0 - 0) of 90°, 110°, and 130°,
respectively. The 110° angle gives the minimum potential barrier. . Figure 9.9 shows
one of the trajectories for a CR0 + O system traversing this potential surface. One .
observes the complex vibrational motiéns in the short-lived C20, activated complex
that eventually dissociates to the products .CL + 0,.

An Arrhenius plot of the rate constant for the CL0 + 0 -+ CR + 0, reaction is
shown on figure 9.10. The solid lines are Jaffe's calculations for the reaction
barriers 6f.0, 0.5, and 1.0 Kcal/mol, Jaffe concludes that a probable rate coeffi-
clent is

a = 4.36%1071% exp(-191/T) em®/molecule-sec . (9.49)

This. rate.is consistent with the data of Basco and Dogra (ref. 15) and of Park

(ref. 16), and in view of the uncertainties in the potential surface, it is reasonably
consistent with the data of Freeman and Phillips .(ref. 17). It is clearly lower than
the remaining data by a factor of 2 to 3, though the activation energy deduced by
Clyne and Nip (ref. 18) is about 0.6 Kcal/mol, reasonably consistent with Jaffe's

0.5 Kcal/mol. The experimental data comes from a wide variety of techniques; Park's
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Figure 9.8- Ground state -potential surfaces for.CL + O +.0 interaction for
different angles o between R(C2 - 0) and R(O - Q) vectors. .

high temperature data comes from a shock-tube measurement of the reaction rate in the .

endothermic direction, whereas the room temperature data come from flash photolysis
and from microwave discharge techniques measuring the reaction in the exothermic .
direction. Thus, it is not at all surprising to find this much variation in the
absolute value of the rate data (as we have seen in previous chapters, a factor of

2 to 3 scatter in data .is typical, and each experimental technique also involves some
uncertainties peculiar to.itself). The calculations, together with experiment, do
establish the temperature wvariation of the reaction within reasonable limits at the

very least.
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+ @ Park (ref. 16), $+ ® Freeman and Phillips (ref. 17), ---(@ Clyne and Nip
(ref..18), ¢© Bemand et al. (ref. 19), -.-(® Zahniser and Kaufman (ref. 20).

9.8 CONCLUDING REMARKS

For those cases where the ground. state potential of a system is well below the
energy of any excited state (so that transitions to the excited states can be ignored)
and where all the reacting particles are heavy (i.e., no free electrons), the reacting
system can usually be adequately treated as a classical system moving on a single
potential surface. The numerical calculations of reaction trajectory can be made to
any desired degree of accuracy, provided that a large, fast computer is available; the
obstacle to accurate calculations of reaction rates is the uncertainty in approxima-
tions to the potential surfaces. The London-Eyring-Polyani-Sato (LEPS) potentials
are reasonably good approximations for systems involving interactions only between .
hydrogen and halogen type atoms, but even for this case these potentials are very
sensitive to the approximations used to account for the effect of the overlap inte-
grals involved and spin-orbit coupling may be significant (ref. 21). For more elec-
tronically complex atoms the potentials used are expressions compounding harmonic or
Morse potentials that fit the observed vibrational spectra of the isolated species..
These potentials are faired into one another-with purely empirical smoothing func- -
tions; the smoothing functions are adjusted until the resulting potential does not
have any unlikely ridges or troughs and the reaction barrier is about equal to the
observed activation energy. This procedure does allow one to at least extrapolate the
experimental data with reasonable confidence to temperatures that are experimentally
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3 : {naccessible. This has been done, for example, in the case of the CR0 + O reaction,
: believed to be important in the destruction of 0y in the upper atmosphere, with
results that at least tend to clarify the uncertainties. Aside from a few cases like
this, and a few very imstructive {1lustrative examples, the extreme.labor and cost of
( performing the numerical calculations will be warranted only when reliable potentials
‘Z become available. Mode-n quantum chemistry is rapidly approaching the capability to

. do this, although the sroblem will be a formidable one at this level of precision

3 where multiple integrals.and spin-orbit interactions will need to be taken into !

account.,
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10.1 SUMMARY

The elements of quantum scattering theory are introduced and the relations
between classical scattering parameters and the quantum scattering parameters are
defined. The S-wave scattering from a spherical potential well is developed, which
applies when the potential domain is small compared to the wavelength of the incident
particle. The scattering amplitude is given in terms of the change in phase that is
produced by the perturbinyg potential in the scattered particle's standing wave func-
tion. The cross section is derived for hard sphere scattering, and also for the Born
approximation that applies.when the potential is a small perturbation compared with
the energy of the incident beam pavilcle. Some examples are cited for the case of a
slowly varying field where the WKB approximation can be used. Finally, the difference
in scattering of like particles and of unlike particles due to symmetry considerations
are discussed.

10.2 INTRODUCTION

Quantum scattering theory has, up to the present time, been primarily applied to
elastic scattering problems rather than to reactive scattering, at least so far as
quantitative results are concerned. However, the theory does contain the elements of
a rigorous approach to reaction processes, and with the application of large, high-
speed computers to the problem, this approach may ultimately provide useful numerical
results. Therefore, it seems appropriate in a text on reaction processes to include
some discussion of quantum scattering theory.

The number of publications on elastic scattering alone is enormous.and it would
be impossible to include here all the viewpoints presented. However, in spite of all .
the approximations and variations in theoretical modeling that have appeared. since
then, the foundations of the theory have not really changed since the 1930s, and the.

classic text.by Mott and Massey (ref. 1), first published in 1933 with a third edition.

published in 1965, remains among the best expositions of the fundamentals tha. can be.
found. More recent texts by Goldberger and Watson (ref. 2) and by Newton (ref. 3), .
and by Rodberg and Thaler (ref. 4) are particularly helpful. Scattering theory has
historically been based on the time-independent stationary scattering states that are
solutions to the steady-state Schroedinger equation obtained when the usual separation
of time and. spatial variables is assumed; the rigorous justification of this formalism
came almost .30 years later with the development of the time-dependent theory, which is
reviewed in a text by Taylor (ref. 5). The fundamentals most important in a numerical
approach .to scattering problems are stressed in a text by Smith (ref. 6). Stallcop .
(ref. 7) developed approximations in a form most useful for numerical calculations
using computers. All of_ the above work is limited to elastic. scattering.

Although quantum scattering theory can handle reactive collisions in principle,
very little quantitative work on reactive collisions has been performed. Even if the
theoretical model were.developed, accurate potential surfaces are not available and it
is not very economical to expend large amounts of computer time to solve problems in .
an approximate manner. However, recently Kupermann and his coworkers (refs. 8~10)

have produced some of the first rigorous quantum solutions for simple reactive molecu--

lar systems, such as H + Hp. This work 1s no doubt a forerunner of other rigorous
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reactive scattering solutions that will be forthcoming. However, as Kupermann points
out, the computer time needed for these solutions 1s severe and becomes increasingly
worse as the molecular weights and electron numbers increase; thus these rigorous
solutions will.for some time yet be limited to selected check-point calculations that
can be used to evaluate the quality of approximate methods, such as those discussed in

the preceding chapters.

The primary advantage gained in use of quantum scattering theory is that time-
dependent trajectories are replaced with spatially dependent wave functions, a proce-
dure which not only simplifies the calculation but also avoids the failure of some
semiclassical methods to provide conservation of energy and angular momentum during
the collision event. Since there are so few quantitative results of gignificance for

engineering applications to serve as illustration, the primary purpose of this chapter

will be to outline a concise review of the fundamental concepts involved in quantum
scattering theory, that can help engineers follow the literature and intelligently
apply such quantitative results as may be forthcoming. Most of these basic concepts
can be illustrated by limiting the discussion to elastic scattering in spherically
symmetric force fields and without concern for relativistic effects. The nonrela-
tivistic model is a good approximation for most practical problems involving rate
processes in gases below 20,000 K. Spherically averaging the potential field is a
convenieunce that is not rigorous but which often provides approximately correct

results . for small molecules {2 to 3 atoms) provided they do not possess a large dipole.

moment. It may be noted that purely élastic scattering theory is useful in engineer-.
ing evaluation of transport properties in gases.

Before beginning the discussion of quantum-scattering-theory proper, a few
remarks about the correspondence principle will be appropriate. Classically, a force
field that extends to infinity would givé an infinite scattering cross section.
However, quantum theory gives a finite value. The reason for this apparent departure
from the correspondence principle is that in classical theory all deflections are
counted, no matter how small, whereas in quantum theory only those deflections that"
exceed the limits of the uncertainty principle are counted. Experimentally, any
apparatus has a finite resolving power so that-only a finite cross section is ever -
measured, . In principle, if the resolution of measurement is improved one could expect
to approach the. limiting value predicted by the quantum uncertainty principle.

The quantum and ¢lassical descriptioms of scattering will agree at finite miss
distances provided that: (1) the deBroglie wavelength of the motion of the reduced
mass particle is much less than thé distance of closest approach, and (2) the deflec~
tion of the particle is not obscured by the.normal spread of the wave packet which
describes .the relative motion between the collision pair.. In this sense,_the corre-~
spondence principle is obeyed.

The uncertainty principle sets some real limits on the experimental resolution
that can be achieved in molecular beam-type scattering measurements. If the beam axis
is taken.along the z-direction, then the uncertainty in one of_the transverse direc-

tions x or y is given by
m Auy Ay >h . (10.1)

where Aue is the uncertainty in velocity along the y coordinate and Ay the
uncertain{y-in y coordinate position. The classical orbit concept is valid if the

miss distance b 1s large compared with Ay
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The angle of spreading of the wave packet representing a beam particle is Auy/uo.
#here u, i1is the beam velocity, and the deflection angle 6, to be measurable, must
be larger than this beam spreading.

Au

B} Buy
9 > ™ é'bmuo (10.3) .

Classically, the deflection is given by a relation such as

FT
5 =~ Eﬁ—'a ggradﬂgz(b/r)tw (10.4)
0

where the duration of impact T with r = b .is the order of b/u,

-
el Ot woern il il - i ek N Y e Camenie .

2
6~ EX8d UD_ (10.5) ‘;;
muo"_ )

Thus, 1f. the intermolecular potential U falls off 'more rapidly than r~! so that
(grad U) falls off more rapidly than r~%, the product - 6b will go to zero at large
miss.distance, and the cross section will approach a finite limit, -

The coulomb potential is a special case of interest; this potential varies as
r™* and 6b stays roughly constant at all miss distances b. Thus, the cross sec-
tion for scattering in a Coulomb potential is infinite, and electron motion in a
highly ionized plasma must be described as. the result of simultaneous perturbations
from.many nearby neighbors rather than the result of just two-body collisions. The .
effect is rather well described by the simple Debye shielding model (see chapter 8,
ref. 11).

Another problem of practical interest is the elastic scattering of an electron in
the static .field of any atom. If the:-perturbation of.the atom by the electron is
ignored, the potential energy a distance. r from the center.of the atom is

U(r) ze? 4 4m o|l " 2 )
= -2 sumelr p(r)r? dr + p(r)r dr (10.6)
o . . .

r

where p(r) is the electron-charge density about the nucleus. The charge inside the
shell r acts as though it 1s all concentrated at the.center, whereas the potential
associated with the charge outside the shell r 4s as though the charge is a layer. of.
surface charge, or layers of concentric surface charge. The total potential is often
approximated by an effective or screened nuclear charge

z_(r)e?
U(r) = - B— - (10.7)

where 2Z, falls off roughly exponentially with r 4in the limit of large r.. Thus,
a finite value of cross section results.
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With just these simple concepts one can show that very high experimental resolu-
tion of scattering must be achieved to determine an accurate cross section, The leas
demanding case 1s for an electron hitting a target molecule. For 1% accuracy in cros
section, the experimenter must determine the scattering angle in laboratory coordi-
nates within 11° 1f the electron kinetic energy is 1 eV, but within 2,.3° at 100 eV,
and within the difficult precision of 0.2° at 10,000 eV. For atomic projectiles, the
requirements are much more severe. For a mere 107 accuracy in cross section for
scattering of He by He, the scattering angle must be determined within 3.6° at
0.02 eV collision energy, and within 0,6° at ! eV. The situation becomes even more
difficult when more massive particlas are involved., As a result, most of the experi-
mental data that are available for comparison with scattering theory is limited to
electron scattering, plus a lesser amount of proton and He't scattering, and most of
this at higher energies than are useful for typical enginesring applications. Neutra

sprtclies beams are much harder to produce and collimate and detect, so that very littl
data for neutral-neutral species scattering exist.

v

10.3 DEFINITIONS AND CLASSICAL THEORY

Consider a homogeneous beam of particles approaching a fixed sample of target
gas. From the separation of the center of mass motion such as. done in chapter 1, we
know that the behavior of the two particles is like the behavior of a single hypothet.
ical particle of reduced mass m iInteracting with a fixed center of force, or in

e

SAmEIATTEI T T O LT

other words interacting with a second particle of infinite mass. Measurements made i1
the.laboratory coordinate system must be reduced to the center of mass coordinate sys-
tem tc compare with theory. TFor example, 1f 6, is the scattering angle observed foi

the beam particle in laboratory coordinates and 6 1s the scattering angle in center .

of mass coordinates, these are simply related by conservation of energy and momentum
(refs. 12 and 13)

sin ©
tan ez = E:_——_——_—— . (10.8)
E: + cos 6§

where m; is the mass of the beam particle and m, is the mass of the target par-
ticle. Thus, if m; << m,, as.in the case of electrons bombarding atoms or molecules,
.= 69, If the beam particles and target particles have the same weight, m; = m, and
8 = 26,. In all subsequent discussion, the.collision system will be viewed as the
particle of reduced mass in the . fixed force field.

A portion of the beam molecules are deflected into ar. element of solid angle du,
Let G dw be the fraction of the total beam passing through unit area which is scat-
tered into the element 6f solid angle duw (see fig. 10.1(a)). The coefficient G 1is
known as the scattering coefficient. Generally, G will vary with direction

G dw = G(6,¢)sin 6 d6 d¢ (10.9)

If nu particles arrive per unit area per unit time, nuG dw dt 41is the probable num-
ber that will be scattered in the interval dt and angular element dw. . Thus, G

has the dimensions ¢m?/molecule-steradian.

Usually, we are interested in symmetrical scattering, as when spherically sym-
metric potentials are assumed, for example. Even where the molecules are polarized
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we assume that the thermal motion randomizes all orientations so that the experiment
is really reaponding to a sort of orientacion-averaged intemmolecular potential,

which is again spherically symmetric. For such cases, the polar scattering coeffi-
cient, F(8), 1s moat useful

F(0)d8 = 27G(0)sin 6 d6 (10.10)

This is the fraction of the beam incident on a unit area which is scattered through an
angular element d6 about 6, The total collision cross section § is

i
s -J; F(8)de (10.11)

The polar scattering coefficient is related to the miss distance b, as shown in
figure 10.1(b). The fraction of the beam which flows through the element of_area
271b.db 1is assumed to all be scattered at the

same angle, from 6 to 6 + d8& nu.G(2, ¢) sin 8 dd dg dt

F(e)de = 2mb(8)db _ (10.12)

nu F(0) d0
Consequently, the polar scattering coefficient /-

F(8) may be defined
db
EEW- (10.13a)

or-alternatively the miss distance b may be
defined

F(6) =_27b

®..«—SCATTERER

- F(e)|de 2rbdb
b_._«,..A...21T dbl (10.13b) __ o
The absolute values in equations (10.13a) —

and (10,13b) indicate that it doesn't matter
whether the deflection 6 i1s positive or

a) b)
negative; in either case a given amount of
energy and momentum has been transferred, and Figure 10,1~ (a) Scattering coeffi-
the mass flow has been impeded equally. client G(6,¢). (b) Polar scatter-

ing coefficient FE(9).

Classically, the angle of deflecticn is simply obtained from conservation of
angular momentum and energy _

2

mr<o = mub (10.14)
2
Z-(E2 + 1262 + u(r) = B (10.15).

where o 1s the angle between the =z-axis, aligned with the velocity vector u, and
the radius vector r between the scattering center and the_ircoming particle .(see
fig. 10.1(b)).
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Solving for da/dr, one obtaing

do & . ax=1/2 '
'ﬁ'%'ﬁ?ciji'%ﬂ (10.16)
¢ o\ mu? r

$ince the path is .symmetrical about Tg» the point of closest approach, the total
increage in angle o during the collision is

[+~]
Acanﬂ—0=2J- 4 qr . (10,17)
Yo
where the lower limic of this integral is given by
\ 2U(r,) -1 -
r2 = bl - — (10.18)
2
mu
The angle of deflection 6 1is then
0
dr- .
o =m - 2b j ' ‘ Vb (10.19a)
; £2{1 - [20(r)/mu?] - (b?/r*)}
[¢] .
which may be re-expressed in terms of the-variatle x = ry/r
1.
(10.19b)

x2)H?

J' dx
6 =w - 2
/(- [20(r /%) fmu® ] (e2 /o%) -

As an. example, the classical scattering coefficient for a hard sphere potential

U= r <X, .
) (10.20)
=0 . r <r
becomes
1

g = 7 - Z‘j. [(rz/bz)dx- lel/'2 = 1 - 2 arcsin ?b(-)- (10.21)

() o
b= sin ; =r cos g- (10.22)

b Fo ., 8-

o ?{'Si“ 3 (10.23).
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o Thus, for hard spheres the polar scattering coefficient is OF POOR QUALITY

)

o o ldb] L2

e F(0) = 27b ) f 5 TG sin 0 (10.24)

B

.k

E L and the scattering cross section is the.constant

i;i " ne? et

S e § = J' F(0)do = -—59-1. sin 0 do = mr’ (10.25) |
c (s () \
:, as.it must be.. In the case.of a general potential U(r), the cross section will then

i be a function of velocity u, of course. These classical definitions and results.will

?\} be useful in interpretation of the physical meaning of the quantum scattering theory.

- 10.4 QUANTUM SCATTERING |

In quantum theory the.incident beam traveling along the =z axis is represented
by a plane wave function

i T T T e

¢ =c el (kamut) (10.26)
: E
» where k 1is the wave number 2w/A = p/h = (ZmE/h)llz. The circular frequency A '
- w = 2y = E/h, If the problem is formulated as a steady state one, then the factor ;
S exp(~iwt) is common to all the wave functions and may be disregarded. !
r A
- The current density of the beam I 1s just the square of the wave function's i |
amplitude multiplied by the beam velocity wu, which is the beam particles' momentum
p divided by the reduced mass m, f 1
: . i
I = Cy = 9_“_12 (10,27) : 4’

o The total wave function is the sum of incident and scattered waves. The scat-
S tered wave should have the form of an outgoing spherical wave; at large r the ampli-

3
tude falls as r~* in order that current density falls as r~2, and the total current ! )
of scattered particles is conserved. ‘ 1
3
4 TN £(0)etKT (10.28) ‘

The cocfficient f£(0) is called the scattéring amplitude. The relation between. £(0)
and G(8) nceds to be established, where G 1is considered.a function of only ©
because of spherical symmetry in the scattering potential. The radial current density
at large r. 1is,

D T T

2

C

g ds = u €’ da = 1f” dr (10.29)
r |

u
[

Note that the assumption of élastic scattering has been used here, that.is, the !
scattered beam .vélocity u, 18 the same as the incildent beam velocity. This
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expression, Eq. (10.29), must equal the fraction of the incoming current.which is
scattered, o

I£2(8)dQ = 1G(8)dQ (10.30)

Thus, the square of £(8) is the same. as.the classical scattering coefficient.. Note.
that it is.unnecessary to know v(r,8) completely to determine G(6); only the.asymp=-
totic form need be known. One additional .assumption here is that the incident beam .
does not pass through the surface element dS where the scattering is observed; in .
experimental situations collimation is always provided to minimize this mixing of
incident and scattered beam flux.

To obtain £(8) the time-independent wave equation for motion of a particle of
reduced mass m and energy E in the potential field of a fixed scattering center is
solved, The solution should have the asymptotic form.

. ikr .
v —r olkz 4 £(O)e (10.31)

b anaed j .

The steady-state Schroedinger equation with energy units of hz/Zmag and distance
units of a, takes a convenient, concise form '

vy + [k2 - U(x)]y =0 (10.32)
As usual, separate the variables r and ©
¥(r,8) = R(r)P(6) (10.33)

Then the differential equation.is separable into an equation for R(r)

L1 4 (p2.dR) 2 _ R TCEN ) N
2 dr (r‘ ar) * [k U = ]R 0 (10.34)_
and an equation for P(6)
1 4 dp -
sin 0 46 (sin o de) + (e + 1P =0 (10.35)

Solutions to the Eq. (10.35) are just the Legendre polynomials. Pp(cos 8).
Thus, the separated wave function of Eq. (10.33) may be expressed as a summation of
these solutions o

(-]

V(r,8) = 25 a,P,(cos OIR (r) ... {10.33a)
P

Each term in this sum is called a partial wave, representing that fraction of the
incident beam which has angular momentum quantum number £ with respect to the
scattering center S

(mub)? = &(L + 1)h? (10.36)

The coefficients ay represent the magnitude of the contribution.to thé scattering
process furnished by each partial wave.
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e
b The.radial wayg-functiens Ry(r) are solutions to Eq. (10.34)., Usually U(r)
ih, will always fall off faster than.r '~ at large r and will not have-a pole at the
£ origin that is higher order than r~!, for example, a decreasing exponential function
: of r .which is often similar to realistic interaction potentials., Then let
ay g
R (x) & —F— = (10.37)
Substituting Eq. (10.37) in (10.34), one obtains A .
dzg , 1
—_ [k?'_ U(r) - 2+ 1) g, =0 (10.38)
dr? r2
d*u, d ' p(2+1)]
+ 21k 2 - |u(r) + ==2"—%|u, =0 (10.39)
drz dr rz. - .

For large -r we expect u(r) to be nearly constant, that is, the spherical wave
must approach a plane wave. Then d?u/dr? becomes negligible, and Eq. (10.39)

becomes
2ik'r%‘i =J' [U(r) +-&-(£—:—-1—2Jdr = 2ik In u
r
(o]

The integral converges if and only if U(r) falls off faster than r~!. When
this integral converges rapidly, the assumption that

(10.40)

of r and that d2?u/dr? is negligible is well justified. .Thus, an asymptotic form
for R(r) valid in such cases, is
eikr
R(r) s = (10.41)
1 this can be expressed in the form
- R(r) = g sinfir - ZL+ ) (10.42)
kr. - 2 2 t
where ng 1s a constant for a given wave number k and U(r), and is called the 2&th
order phasé shift. The term -2m/2 is added merely as a convention so that np will

be zero if U(r) 1is zero.

Now to determine the constants
is expanded in terms of partial waves

ap in the expansion, the incoming plane wave

eikz - eikr cos 6 _ 2(21 + 1)_i£j2(kr)1?_2(cos 8) (10.43)
=0
ORIGINAL FAGE IS
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235

u is a slowly varying function .

e TR 5 -
.ﬁ,w s | -2 »
X2 ’ H
'
H
o G .




LT T TERRTSLST L e e e e

The functions j,(kr) are the spherical Bessel functions of half-integer order

1/2
Ui
3060) = (o) Ippasa () (10.44)
The first few of these functions are . ORIGINAL PAGE IS
OF POOR QUAL
3y = 5_1“1:(:‘_1”1 QUALITY (10.45a) .
o 8in(kr) _ cos(kr)
N ery? ) (10,45b)
1, .[ 3 _. (klr)]sm(kr) -~ —3— cos (kr) (10.45¢)
(kr)® . (kr)?
and remaining functions may be evaluated with the recursion formula
28 + 1
g = THRe - dp " dp- (10.46)

For large r the asymptotic values of the spherical Bessel functions can be
useful

I, == sin(kr - — (10.47)

This asymptotic relation can be derived as follows. An expansion of Eq. (10.43)
is made in terms of Legendre functions

elkr cos 8 E b3, (r)B, (cos ) (10.48)

Let cos 6 = t, multiply both sides by Py, and integrate from 6 =0 to mor t
from +1 to -1,

1 1
2b,j,(r)
ikrt - 2 - 128 D
J- e Pz(t)dt bgjg J' Py dt ST (10.49)
-1 -1
ikrt
Integrate by parts with Py(t) =u and e dt = dv _
1 3 dp
ikrt 1 ikrt 1 ikrt 2
.f e Pz(t)dt Tkr | © o -'i_l{f_f e 3t dt (10.50)
-1 -1

The second term on the right of Eq. (10.50) is the order of r~* for large r, so in
the limit

2 .

) ikrt
771 003 o Tisle

P (t) (10.51)

=1
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A general property of the leégendre polynomial 1s gRIGfNAL. PAGE |s
F POOR
P,()= 1 OR QUALITY . (10.52a)
p (-1) = (-1 (10.520) |

Thus, Eq. (10.51) becomes

2

2 .z_j:_ . - .&lr. K
szjg(r) -> s sin(kr . 2) (10.53) .

Note that sin(kr - 2m/2) becomes cos kr when & 1s odd., The asymptotic form of
the incident wave 1is thus.

= oikz 2(22.+ l)iQPl(cos 8) sin[kr ;r(zn/Z)] (10.54)
A

Yy

The scattered wave is the total wave function given by Eqs. (10.33a) and (10.42), less ; .y
the incident wave given by Eq. (10.54) 1

P, (cos 0) _ :
Y= E _,L_k?—_ [az s’in(kr - % + ng) - (2% + l)i_g' sin(kr - ’;n)] (10.55) ".

-

Substitute

ilfr _ ef-ikr
21

sin kr = e

P . 2 SIS Ea

and require that the term in. e—ikr/r must vanish, since this repreésents an incoming

or spherical collapsing wave.

Ny T ]

X

This boundary condition determines the values of the constant coefficients ag.
The factors in brackets in the summation of Eq. (10.55) bécome

B}

" LT L Ln
LaR sin(kr -3 + nl) - (22 + D)1 sin(kr - -2—)]
i(kr-2m/2) -1 (kr-2m/2) _
= .e___________Zi [az einz - 12'(252. +1)] - e 5T [az e iT‘R. - 12_(“ +1)]
(10.56) ,1
from which it is seéen that j
a, = (20 + 1)1* '™ (10.57) 1
i
The total wave function is thus ’
Vo= oD (20 + 1i* elne P (cos )R, (r) (10.58) ,1
9 .
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and the effect of the scattering center has been to shift the phase of eac¢h of the

partial waves by a different amount -ny. The asymptotic expression for the scattered
wave 1s -

P,(cos 8) 1i(kr-2m/2)
- ) e L L, 2dng _
v — -7 22 + D1t 1) (16.59).

The scattering amplitude £(6) is, by comparison with Eq. (10.31)

£0) = i D (22 + 1) (1™ = )P, (cos 0) (10.60)
z

Note that i% exp(-12n/2) equals unity. The scattering amplitude is a complex.
fun¢tion.

£(8) =.A + iB (10.61a)
A = 51-1; ;(29. + 1)sin ZnQPz(cosl 8) (10.61b)
B "ﬁli ;(22 + 1)(1 - cos 2n,)P,(cos 6). (10.61¢).

and the differential scattering coefficient. is
G(8) = £2(8) = A% + B2 (10.62)
Equation (10.60) may also be expressed

ing _ -ing
£(98) =-§ :E:(Zl + 1)ein2 = Zie Pz(cos 8) (10.63)
2

Thus

2
£2(0) =-l—|zz:(22 + l)eing sin nng(cos 8) (10.64)
k2

Integrate Eq.?(10.64) over all solid angle to get the total cross section. Only those
terms with Py(cos 6).survive this integration bécause of the orthogonality of

Legendré polynomials, and the result is an expression for the total elastic scattering
cross section,

21 i
S = J- J' £2(8)sin 6 do do = % E(zn + 1)sin? n (10.65)
K
o (e} - 'S

All that remains is to evaluate thé phase shift ny. At this point some approxi--
mation must always. be made that is equivalent in one way or anothér to assuming a
classical orbit, such as a straight line trajectory, and thus there is some question
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: whether the results are really more precise than the classical results, except that.
L the quantum solutions have the wavelike character that .is observed, whereas the

¥ ¢lassical solutions give_a smoothed average result,

h

g f' The most straightforward way to obtain the phase shifts. Ny, when the potential
L U(r) 1s known, is to numerically solve the Schroedinger equation of “Eq.. (10.38), and
- find the limiting value at large  r.

ot Ry =80 L sin(kr - A “z) (10.66)

10.5 RELATION BETWEEN CLASSICAL IMPACT. PARAMETER AND PARTIAL WAVES

Equation (10.36) equates the classical and quantum expressions .for the angular
momentum squared, and an impact parameter by may be defined

by = AE+ D = AT F D A = 2EED (10.67)

which represents a sort of .mean miss distance for beam particles having the anguylar
; momentum. &h with respect to the scattering center.. The de Broglie wavelength of
L the beam particles is \A,. The incident beam can be thought of as separated into

3 partial waves entering tubular shells as shown in figure 10.2. The cross-section
area for all shells containing the

fraction of the beam with angular

momentum less. than or equal to _%h . AVERAGE MISS DISTANCE -
is FOR EACH WAVEVIITF N Ag ——= (4 %) 2g.
S = 2(2 + 1)mA3  (10.68) /5 CRIGINAL .PAGE IS 1~
Mpg—m=—m————= OF POOR QUALITY
L and the cross section for a single . VOl ——————
- partial wave is ViZag — — — — —
\{. \/_5)\0.____.._.
B =@+ M2 (10.69) V2
° - 2

. f SWAVE INCIDENT
'v . This accounts for the weighting SCATTERING p WAVE \ Q—VEEOE(‘?I¥'YU B
3 factor (22 + 1) which appears in CENTER d WAVE \\\\\‘ REDUCED
the. expansion of an incident wave ) \\ MASS, m
3 into partial waves. The mean IWAVE : »
A radjus of the s-wave is zero, of g WAVE \\\;
v the p-wave is /5}0, of the d-wave h WAVE, etc.

is 6Xo, etc. A fairly good

approximation for this mean radius Figure 10,.2- Partial waves of a molecular

is (2 +1/2)),. The outer radius beam.incident on a scattering centér,

of the tubular shell for a given & Ao = h/mu = 1/k,.

may be taken as (£ + DAy

For. heavy particles, Xo 1is typically very small, at the ¢ollision velocities of
interest, compared with the effective limits of realistic molecular scattering poten=
tials; thus, a very large number of partial waves need to be included before the total
effective cross section is accounted for. Only for the scattering of low velocity
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‘ electrons, where the momentum mu, 1is small and A, is large, will a small number
N of partial waves suffice in a practical problem.

. 1 10.6 S-WAVE SCATTERING FROM A SPHERICAL POTENTIAL WELL

Consider the spherical potential well shown in figure 10.3

? U(r) = =Uy » r<r
(10.70)

o =0 , ry<r

_ for the case where r, is smaller than the de Broglie wavelength. Ao, In this. case
i only s-waves reach the potential well. Experimentally, s-wave scattering is often
' dominant in low velocity electron scattering. The total wave function for incident

and scattered waves is then

ik,r sin k_ r. ik,r
= ikoz . e © ~ ° e © -
Vv =e + fo = kor + fo - (10.71)
and the scattering amplitude £, is
= L 2ing _
fo = 370 (e 1 (10.72)
(o)
The asymptotic form of the total wave function 1s _
ein°
Y~ ” sin(kr + n.) (10.73)
oF ' o]
and the total elastic scattering cross section is
S = fﬂL»sinz n (10.74)
k2 °
o]

The phase angle n, for the s-wave is evaluated from the solution of Eq. (10.38) _

2 i
8 4 k2 - u()]g =0 (10.75)
dr?- °

Inside the well, the solution which vanishes at the origin is

g = A sin kr (10.76)
where
2m(E + U) vz .
k= s ] (10.77)
ORIGINAL PAGE IS
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The wave function and its derivative outside the well are-now matched to the wave —
function inside the well.

ine
e
ORIGINAL PAGE |s k- sinliry +ng) =4-sin ke, (10.78)
OF POOR QUALITY
eino cos(koro + no) = Akcos kro (10.79)

Dividing Eq. (10.78) by (10.79), one obtains

k
(s
tan(kor° + no) = 4 tan kro (10.80)

. O
n, = -koraw+ arctan(i' tan gro)

2mE tan yzm(E + U ) (r /h)
o (o) o’ o
r, + arctan T Uo/Eo (10.81)

Equation (10.81) gives the phase shift in terms of the incident beam energy E,, the
well depth Uy, and the well radius ~Tge

The phase shift n, vanishes as the velocity (and k,) of the incident wave. goes
to zero, or as the potential U, goes to zero; n, represents thé difference in
phase outside the potential well compared with the wave solution in the limit of a

vanishing potential. The total scattering cross section has a finite limit at. zero
vélocity, however.

k
(o)
ko-ro + ™ % tan_ kro (10.82)
K 2
= AT in? g oA A0 -
S " sin Ny 2 (k tan kro koro>
o o
) tan kro 2
a:lrnro (T - l) | (10.83)

For values of kry, = n/2, 3n/2, 51/2, etc., the phase shift does not go to zero as k
vanishes, and the cross section becomes infinite. This behavior is associated with
the bound state énergy levels that exist within the potential well,

Figure 10.3 shows the wave function g(r), rather than R(r), in order to have
constant amplitudé. The phase difference Ng 1s.just k times the distance between
¢rests., For attractive potentials the phase shift is positive; the incoming wave is
drawn into the scattéring center. Repulsive potentials lead to negative ng and
push the incoming wave away from the scattering center,
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Typically the amplitude of the wave function g(r) inside the well is small com-
pared with the amplitude outside the well. This situation is usual when a short wave~
length.inside is to be joined to a long wavelength outside. In this case the scatter-.
ing 1is called potential scattering, and the wave function  g(r) is qualitatively as -
shown at the top of figure 10.4, However, for certain values.of the kinetic energy,.
or certain values of the radius r,, the slope at the edge of the well is about zero
and the inner and outer wavefunctions .may be joined with about equal amplitude. The
cross section then becomes very large and the scattering is called.resonant scattering.
Resonance 1s typically quite sharp and .is not a large factor in atomic.collisions, as
it pertains to a very small portion .of the total collision spectrum . of velocities in
a typical gas. Where the potential function extends a finite difference r, g8reater
than ),, the partial waves for which

r, > VAR ¥ 1) A .--—J——-l””{("'1
(o]

will need to be included. Thus, the maximum value of £ which needs to be considered
is about rok .

POTENTIAL
SCATTERING
la "?o | E’ r
ol ool 8 ’
Vo E
U UV N \(__/ a
~ 2
- < - NEAR
S } RESONANT
or . = to SCATTERING
(3]
2
5
w | /
U S|
r) 2 |
2 RESONANT
: \\\~_‘,//,SCATTERING
‘0.
Y
[} ’o -

Figure 10.3- S-wave scattering from a Figure 10.4- Amplitudes of g(r) for
spherical potential well. --- g(r) potential scattering, near resonant
wave for. U, = 0. —— g(r) wave for scattering, and resonant scattering.
U, # 0.

0

10.7 HARD SPHERE SCATTERING CROSS SECTION

For a hard sphere, the partial waves. Rg(r) must all vanish at the boundary
r = ry. From the asymptotic form of these functions given by Eq. (10.42)

n, = 5 - koro (10.84)
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koro

() § ~ AL (204 Dsin®n, (10.85)
R L v

where the upper limit of the summation is taken as kgr,. When a large. number of._
partial waves 1s involved, the summation may be approximately evaluated as the

The integrals of & cos &m and 2 sin &7 from 0 to kry, all yield quantities that
=z are the order of & at the upper limit, that 18 Kkgyry. Thus, the total scattering
Fo cross section may be expressed
" 1

S = znrg[1 + 0(k1r )J . (10.87)
0o 0

which in the limit of large koro becomes 2mr3 or just twice the classical scatter-
ing ¢ross section, Eq. (10.25). If the differential scattering ccefficient of

Eq. (10.64) is plotted for a given value of kg, one finds that. this doubling of the
classical cross section 1s due to a very large spike. in.scattering that occurs near.

g = 0, and that the differential scattering coefficient rapidly drops to a nearly con-
stant value (for the hard sphere case) of 1ry/4, the same as the clessical value.

The situation is sketched qualitatively in figure 10.5. The forward ascattering given .
by quantum theory about 6 = 0 looks huge in terms. of. £2(8) as suggestad by the
broken vertical scale in. figure 10.5. However, recall that this coefficient ia
weighted by 27 sin 6 before integrating to get the cross section (see Eqs. (10.10)
and 10.11)). The fraction of the beam which is. forward scattered is just equal. the
fraction that 1s scattered throughout. the remainder of the angular range. Thus,
quantum scattering is just the eclassical result plus thé forward scattering, except
that. the classical result for £2(8) gives. a.smoothly averaged value (constant in the
case of hard spheres) which lacks the detailed structure given by the interference
pattern of superimposed partial waves. Qualitatively, this.same result is found for .
any steeply repulsive scattering potential; that is, except for the narrow peak of
scattering in the forward direction, the. classical result is a structureless average
of the quantum result. For: attractive potentials, resonances such as shown qualita-
tively in figure 10.4 are also possible; these provide narrow peaks.in the differen-
tial scattering coefficients at selected values of ky and 6 which will be super- -
imposed on the classical like or potent;gl_sggptg;ggg_Egckgroundt“ Usually these peaks
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4 1
v A . koro ) . f\vl
S --,—-“—I (28 + 1)[—2---'5"“cos(9.1r -2k r )]d!l,
k 2 . ) 00
o %
27 ; koTo 27 koro
= 2% + 8 - == (2% + 1)eos(am - 2k r _)de

k 2 o 2 o0

- o o %

< 2 1 1 o"0 ,

= 27r [1 + - — J- (2% + 1)(cos &m cos 2k r = sin & sin. 2k r )d2
3 o] k r 2.2 4 00 00
; o0 ker o .

: 00 . ... (10.86).
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are 8o narrow that for most engineering purposes, such as evaluating transport proper-.

ties, they do not contribute very much toé the-total cross sections when averaged over
a range of collisfon velocities.
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£2(0)

4 . )
0 0 n/2

Figure 10.5- Differential scattering coefficient £2(8) for hard sphere scattering;
—— quantum solution; ~--- classical solution.

10.8 BORN APPROXIMATION FOR CALCULATING PHASE SHIFTS

The Born approximation is one of the most used methods of evaluating partial wave
shifts; it is valid in the limit wheré the collision energy 1s very large compared
with the scattering potential. Unfortunately, this is not a realistically useful
approximation for many engineering problems where low énergy scattering is of impor-—
tance; however, the Born approximation does give useful results for comparison with
high energy molecular beam experiments. It also provides some useful insight into the
scattering phenomenon. Since the scattering potential is defined to be very small, it
is treated as a perturbation.in this method. The Schroedinger equation may be
expressed

V3 + k% = U()y (10.88)

where U(r) is a very small quantity and the wave function asymptotically approaches

e (10.89)

The scattering amplitude £(0) will be very small in this case, however, and keeping
only terms_of first order on the right side of Eq. (10.88) results in

ikz

V2P + K2y = U(r)e & F(x,Y,2) (10.90)
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where the function G 1s any solution to the homugeneous part of Eq. (10.90) .

Lo

V3G + k%G.= 0 (10.92)

and the second term can be shown to.be a solution to the inhomogeneous equation using
Green's theorem, which relates an outward flux over a surface to the production of
that flux within the volume enclosed.

J'("' _g% - K %I‘}:_)ds I(WZK - KV?y)dt e e (10.93)

¢ O R A St LN

¥or the present problem the function K is

eik|r -r'| o
K= —Z;T;f?;TT—- (10.94) o
2 By differentiating Eq. (10.94) one_finds
V2K = -k*K (10.95) ;
while from Eq. (10.90) 1
V2 = -k%y + F (10.96)
] Thus, the right-hand side of Eq. (10.93) 1is just % |
-f(wkzx - Kk?y + KF)dt = —fKF dt (10.97) { g
g The integral on the left side of Eq. (10.93) can be ; {

performed over a surface about the singularity in :
K, that is, about the point r = r'. The surface
integration path in the r-domain is shown in
figure 10.6. The contribution over the outer sur-
face vanishes as r becomes very large, approaching
infinity, because both K and y vanish there; the
contribution along the surface of variable r and
back again cancel one another and contribute nothing
to the total; only the contribution over the inner
surface r = a remains. As a goes to zero, the
integral

SRR P
e el Y.

S e e Ta e e

dy
La K qm 9 =57 0 (10.98)

|r-r'|-m

Figure 10.6- Contour integral
for finding solution of the vanishes bécause dy/dn 1s a finite constant within
Schroedinger equation in this small region, K varies as a~!, but ds varies
the Born approximation as a2, However the integral
using Greén's theorem.
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approaches a finite limit equal to -y, Thus

Vo= -J.J.fKF dr (10.100;

which 18 Just the solution assumed in Eq. (10.91).

Now returning to the problem of evaluating f£(0), we note that r is the dis-
tance from the origin of the spherical scattering potential to the point where the
solution for the scattered beam inteénsity is desired, with component 2z, while =r' i
the radius vector variable of integration with the ¢omponent =z' along the axis (see
fig. 10.7). The solution for the wave function ¢ 1is

e 1 .fe-1k<|? -3+ 2"

Y= e vy |r-r',l

u(')ds! (10.101

Figure 10.7- Coordinate transformation for the integration of Eq. (10.101).

For very large values of r compared with the effective range of the scattering
potential

. >
T =% = -1, 7 +ﬁ(—l—,) (10.10;
o2
-
whére 1, 1is a unit vector .along the radius v, Thus
- -> -
A I o ¢ AR N LIS (10,10
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where 1, 1s.a unit vector along the 2z .axis. The difference between thesc two .
unit vectors has a magnitude 2 sin 6/2, and polar coordinates are chosen fur the
integration

dt' = v'? dr' sin o do dé

. -> ->
such that the axis of symmetry is in the directign.of the difference vector (1,- 1.);
or in othér words the =z' axis is parallel to (1, - 1), figure 10,7,

-

> > 6 . : |
(1z - }rzf r! e 2 sin.i‘r' cos o {10, 104) b

Using these definitions in Eq. (10.101), and keeping only terms of first order

ikr
e __

(%154

ikz _

v=e erk sin(8/2)r cos a

U(r)r? dr sin o do d¢ (10.105)

Comparing Eq. (10.105) with Eq. (10.89), we see_that the scattering amplitude may be
expréssed,

st i

f(0) = - f? J'eZk sin(6/2)r cos a U(r)r? dr sin o da dé i (10.106) 1

|

The integration over ¢ contributes a factor of 2m, vhile the integral over a

yields ] ]

T é

2k sin(8/2)r cos « _ 2 sin{2kr sin(8/2)]

J. e sin a do. = 3kr sin(6/2) (10.107) . _ }
o B {
And a final expression for thé Born approximation to f(0) is ;
r i

o s

- sin[2kr sin(68/2)] 2 ..

o 3 '

Recall that the energy U(r) is expressed in units of eZ/Zao or h2/2maé, and the .
radius r in units of a, in this derivation. ; i
The Born approximation for coulomb scattering is obtained when ; %

u(r) = 22 (10.109)

However when this potential is simply substituted in Eq. (10.108), a meaningless
definite integral i obtained that does not c¢onverge to a constant. :

£(0) = ~ 'k—s—i-né('—e/—z)- fo sin[2kr sin(8/2)]dr (10.110) ‘
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Consequently, the potential is expressed as a screened potential
an =L /D
U(r) = 22 i,

(10.109a,

where the parameter D is the Debye shielding length, which physically represents the
shielding of charge that always occurs in.any plasma of finite density. For this

limit as D approaches infinity
5".
J' sin[2kr sin(e/Z)]e-r/DTdr -

[0}

2k sin(6/2) )
[2k sin(8/2)]% + 1/D?

-1
o (2k sin %) (10.110a)

Thus, the scattering amplitude in the Born .approximation is

Z
£(8) = - ’ 10.111
) 2k% 8in?(6/2) ( )
and the polar scattering coefficient F(6) is in units of aé
; z? sin 6
F(8) = 27 sin 6£2(8) = T
®) ®) 2k" sin*(6/2) 100,000
(10.112)

10,000
The total cross section is of course

T
s = f F(8)de (10,113) 1,000
A

A plot of [sin 0/sin"(8/2)] is shown in
figure 10.8. One can see the tremendous
forward scattering spike caused by the long
range small angle deflections. In any real
situation, the Debye length D would have a 10.
finite value, of coursé, which would
greatly reduce this forward spike.

100

24 F(9) a: In 22

1 i 1 i i
Q n/4 n/2 3n/4 n
SCATTERING ANGLE, 6 .

Figure 10.8~ Born approximation to the
polar scattering coefficient, F(0),
for the coulomb scattering poten=
tial, 2Z/r.

248

OF POOR QUALITY .

e b

preet s

S s i il SESCUAEEI e ;. fup o T By g ¥

PSPPI

e T L SN ot o S T'WVWWWP-W‘" ettt el et bl
" i . : ! W v .
e y . T “
. . iy ! . ‘ . :

e et ¢ ke e e o el . Thit b i g

e e et s amas



TRy, TN -

ST T T 0w RS T S e s T g A

10.9 PHASE SHIFTS IN A SLOWLY VARYING FIELD

Many practical problems arc ndt adequately treated by the Born approximation,
which is a small perturbation method. In chemical reacticms the most important ¢olli-
sions. oceur. near. threshold where the. perturbation potential may be very large compared
with the ¢ollision Kinetic enérgy; in this case other approximations must be devel-
oped. The most promising approach, from an engineer's point of view, seems to be a
semiclassical.approach such as outlined by Ford and Wheeler (refs. 14 and 15) and
applied by Stallcop (ref. 7) for the calculation of elastic scattering cross sections .
for a class of spherical potential.scattering centers with exponential repulsion and
inverse 6th and 4th power attractions, in terms of the distance between centers.
Pogsibly this.method may some day be developed further.to include nonelasti: scatter-
ing or chemical reaction. Again, the. work will become worthwhile when reliable poten-
tial functions become available; thus the accurate evaluation of multiatom potentials
discussed in chapter 9 is really central to a large class of chemical reaction
problems.. -

The semiclassical approach used by Ford and Wheeler is built upon an approxima-
tion developed by Jeffries (vef. 16) for the case where the potential U(r) does not
vary appréciably in a distance comparable with the wavelength. The WKB (Wenzel-
Kramers-Brillouin) approximation is then used to obtain the phase shift (see, e.g.,
Goldberger and Watson (ref. 2)) by the so-called JWKB method

(]

N~ Nguen & 'f [k(x) = ko]dr - krc + (R + %—)-g— (10.114)

Te

where K, 1s the wave vector of the incident wave, r, is the classical turning point
or distance of closest approach, and k(r) is the local wave number

N - U(r L+ 1/2\°
K(r) = kg b/1 UL o ) (10.115)

The approximation ¢(8 + 1) ~ (& + 1/2)® has beén used in Eq. (10.115). The turning

point r, is the largest value of r which satisfies the equation

E

u(r.) 2
| S+ (R + 112) (10.116) .

korc

that is, where the largest root in k(r) =0 occurs, The phase shifts are related. to
the c¢lassical deflection angle of Eq. (10.19) by

’gll.-~
2 0 0 (10.117)

when the. classical angular moméntum for the miss distance b 1is equated to the quan--
tum mechanical angular momentum for the € partial wave

b~ (v Bk, (10.118)

[
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: For large values of 2 where the scattering potential is small compared with the
E c¢ollision energy, U(r)/E << 1, a series expansion derived by Smith, Marchi, and

l Dedrick (ref.. 17) is useful., Using an expansion of this type, Mason and Vanderslice
- (ref. 18) express the JWKB phase shift.

(-"]
k ;
n= To F(z)(z - bz)l/zdz (10.119) :
b2 ‘i
H
where |
1
o n+1 ;
1™ fa [U(zl/z)] !
Fz) = 2 T(n+2) jn+1 ‘z —E (10.120) :
n=0

For the special case where the potential falls off as the mth inverse power of r

r m
U(r) = p(—f-) , m>2 (10.121)

the integration of Eq. (10.119) can be carried out analytically to .give

= @ +1
; n+1 1\./1 m°

L (e - 2(E) [ D (kore) ]

b, . n = }— - . v ] —

(10.122) .

: '(n + 2)1“(n ; 1 m - n) E . i
n=0 ‘
s
i; The series of Eq. (10.122) converges absolutely when v i
4 m m/2 m ' i

‘ | ('2') e\ p ., (10.123)

(m _1)(m/z)-1 3 E i : ‘

3 :

For other. potentials, the integrals generally need to be worked out numerically.
For potentials with a maximum (such as fig. 9.1) the JWKB approximation for the phease
shift. becomes discontinuous when the collision energy E equals the barrier-maximum, ,
and it has doubtful accuracy for energies in this reglon. Stallcop works out an 1
approximation to the phase shift which can be applied uniformly to energies in regions
of both the potential maximum and the potential minimum. Using this approximation, : *
Stallecop calculates the scattering of Nt by N for four different interaction poten-
tials shown on figure 10.9(a) which lead to ground state N and Nt; the resulting ... . . ..
elastic scattering cross sections arée shown in figure 10,9(b). i ]

S .

Many volumes would bé required to describe in detail the multitude of approxima- %
tions worked out for semiclassical elastic scattering, but the above examples will at ‘
least serve to indic¢ateé the general theoretical approach and the kind of modifications ‘
required to get approximate answers. In this era of modern numerical computers, the 1 1
analytic approximations no longer hold as much importance; one can after all, numeri-
cally integrate Eq. (10.38) to find.the asymptotic solution at large r to determine.
the phase shifts for a givén interaction potential U(r). The really impor:ant
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Figure 10.9- Example of elastic scattering cross sections.obtained with the
semiclassical JWKB approximation.

development, from the viewpoint of this book, would be to include inelastic effects
to account for chemical-like reactive scattering.

10.10 SCATTERING OF LIKE PARTICLES

Up tc this point we have been considering the scattering of unlike particles. If
both particles are identical, it becomes impossible to distinguish whether the inci-
dent particle or the target particle is in the scattered wave. Consequently, the wave
function ¢ must be either symmetric or asymmetric with respect to exchange of the
incident and target particles, depending upon whether the total spin is even.or odd.

This interchange of particles is equivalent to a reversal of the radius vector;
in the center of mass system this means that thé angle. 6 beéecomes = - 6 and 2z
becomes -z. The spatial part of the wavée function._is_thus

ikz

ikr
v e * e—ikz + &

E— [£(8) £ £(n - ©)] (10.124)

where the (+) sign gives the symmetric function required whén the total! spin function
is asymmetric, and the (-) sign gives the asymmetric function requiréd by symmetric
spin functions.

251

;i
:
¢
i
i

. Amias o e M

i = -

FrUwTAwGa T T T h

e




If the total spin function of the particles is asymmetric the intensity of the
scattered wave-is . ... ...

I, = |[£(8) + £(r - 8)|* - (10.125)

ORIGINAL PAGE I3

while if the total spin function is symmetric OF POOR QUALITY
I, =|£(8) - £(n - 0)|2 (10.126)

:
E..
s
;
S
E
]

o I = £2(0) + £%(r - ) o - (10.127a)

In classical theory the total intensity of the scattered wave is Just

classical

but in quantum theory this becomes the.complex quantity

T ouantun ™ ECOVEMO) + £(m —0)E*(n - ) £ [£(m ~ 0)£*(0) + £(O)E*(n - 0))]
(10.127b)

In general there will exist a distribution of states and the total number of
states is (25 + 1)?, where. S 1is the total spin of each collision partner. If S is
half integral there will be S(2S + 1) even total spin states and (S +.1)(2S.+ 1) odd
total spin states. These particles are Fermi-Dirac particles, and the total observed

intensity of scattering for Fermi-Dirac particles is a weighted sum of symmetric and
antisymmetric scattered waves.

_ S +1 s
'mTETr s tEaT (10.128)

On the other -hand if the spin of .each particle is integral, the particles are

; . Bose-Einstein particles and the weighting factors are reversed; there are then

SR $(258 + 1) odd total spin functions and (S + 1)(2S + 1) even total spin functions. The
S observed intensity of scattering of like bosons is

| _ s S+ 1 .
{1 g "35+1T 5 t2s 771 La (10.129)

3 The differential cross section for scattering of distinguishable particles was

2
(10.130)

1(8) = —21 " 20 + 1) (2" - 1)P (cos 0)
| 4 L

but for indistinguishable partic¢les the cross section must be multiplied by 2, since
the scattered waves representing the two collision parameters cannot be distinguished.
However, only even or odd angular momentum states are involved in the sum, depénding
upon whether even or odd symmetry is required.

N 2
1.(8) = =5 D (22 + 1) - )P (cos 8) (10.131)
s 2k 2 L
even
. 2
5) = Lo 2ing__ - 3,11
a9 " a "§d(2“1)(e T DRees 9 (10.132)
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10,11 CONCLUDING REMARKS

The foregoing discussion on quantum. scattering theory has been included primarily
té indicate to the engineering user the nature of this area of rate process theory
‘ development; the approach used in scattering theory will become really interesting.as.
§ far as chemical-like rate processes in gas phase are concerned when. it is able to i
- incorporate inelastic scattering potentials and transitions between different. poten-
- tial surfaces. The primary interest in scattering theory now exists because it can
@’ explain some of the structure in scattered beam intensity as a function of scattering
i angle that is observed in relatively high energy molecular.beam experiments.. In
addition to its extension to inelastic scattering, the theory also needs to include.
nonspherical potential scattering to really find full application to. many practical

problems..
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